亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Rust programming language is becoming increasingly popular among systems programmers due to its efficient performance and robust memory safety guarantees. Rust employs an ownership model to ensure this guarantee by allowing each value to be owned by only one identifier at a time. Additionally, it introduces the concept of borrowing and lifetimes to enable other variables to borrow the values under certain conditions temporarily. Despite its benefits, security vulnerabilities have been reported in Rust projects, often attributed to the use of "unsafe" Rust code. These vulnerabilities, in part, arise from incorrect lifetime annotations on function signatures. However, existing tools fail to detect these bugs, primarily because such bugs are rare, challenging to detect through dynamic analysis, and require explicit memory models. To overcome these limitations, first, we characterize incorrect lifetime annotations as a source of memory safety bugs and leverage this understanding to devise a novel static analysis tool, Yuga, to detect potential lifetime annotation bugs. Yuga uses a multi-phase analysis approach, starting with a quick pattern-matching algorithm to identify potential buggy components and then conducting a flow and field-sensitive alias analysis to confirm the bugs. We also curate new datasets of lifetime annotation bugs. Yuga successfully detects bugs with good precision on these datasets, and we make the code and datasets publicly available for review.

相關內容

Motion planning is a computational problem that finds a sequence of valid trajectories, often based on surrounding agents' forecasting, environmental understanding, and historical and future contexts. It can also be viewed as a game in which agents continuously plan their next move according to other agents' intentions and the encountering environment, further achieving their ultimate goals through incremental actions. To model the dynamic planning and interaction process, we propose a novel framework, DeepEMplanner, which takes the stepwise interaction into account for fine-grained behavior learning. The ego vehicle maximizes each step motion to reach its eventual driving outcome based on the stepwise expectation from agents and its upcoming road conditions. On the other hand, the agents also follow the same philosophy to maximize their stepwise behavior under the encountering environment and the expectations from ego and other agents. Our DeepEMplanner models the interactions among ego, agents, and the dynamic environment in an autoregressive manner by interleaving the Expectation and Maximization processes. Further, we design ego-to-agents, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions. Experiments on the nuScenes benchmark show that our approach achieves state-of-the-art results.

The successful integration of large language models (LLMs) into recommendation systems has proven to be a major breakthrough in recent studies, paving the way for more generic and transferable recommendations. However, LLMs struggle to effectively utilize user and item IDs, which are crucial identifiers for successful recommendations. This is mainly due to their distinct representation in a semantic space that is different from the natural language (NL) typically used to train LLMs. To tackle such issue, we introduce ControlRec, an innovative Contrastive prompt learning framework for Recommendation systems. ControlRec treats user IDs and NL as heterogeneous features and encodes them individually. To promote greater alignment and integration between them in the semantic space, we have devised two auxiliary contrastive objectives: (1) Heterogeneous Feature Matching (HFM) aligning item description with the corresponding ID or user's next preferred ID based on their interaction sequence, and (2) Instruction Contrastive Learning (ICL) effectively merging these two crucial data sources by contrasting probability distributions of output sequences generated by diverse tasks. Experimental results on four public real-world datasets demonstrate the effectiveness of the proposed method on improving model performance.

Large language models (LLMs) have emerged as pivotal contributors in contemporary natural language processing and are increasingly being applied across a diverse range of industries. However, these large-scale probabilistic statistical models cannot currently ensure the requisite quality in professional content generation. These models often produce hallucinated text, compromising their practical utility in professional contexts. To assess the authentic reliability of LLMs in text generation, numerous initiatives have developed benchmark evaluations for hallucination phenomena. Nevertheless, these benchmarks frequently utilize constrained generation techniques due to cost and temporal constraints. These techniques encompass the use of directed hallucination induction and strategies that deliberately alter authentic text to produce hallucinations. These approaches are not congruent with the unrestricted text generation demanded by real-world applications. Furthermore, a well-established Chinese-language dataset dedicated to the evaluation of hallucinations in text generation is presently lacking. Consequently, we have developed an Unconstrained Hallucination Generation Evaluation (UHGEval) benchmark, designed to compile outputs produced with minimal restrictions by LLMs. Concurrently, we have established a comprehensive benchmark evaluation framework to aid subsequent researchers in undertaking scalable and reproducible experiments. We have also executed extensive experiments, evaluating prominent Chinese language models and the GPT series models to derive professional performance insights regarding hallucination challenges.

As the immense opportunities enabled by large language models become more apparent, NLP systems will be increasingly expected to excel in real-world settings. However, in many instances, powerful models alone will not yield translational NLP solutions, especially if the formulated problem is not well aligned with the real-world task. In this work, we study the case of UMLS vocabulary insertion, an important real-world task in which hundreds of thousands of new terms, referred to as atoms, are added to the UMLS, one of the most comprehensive open-source biomedical knowledge bases. Previous work aimed to develop an automated NLP system to make this time-consuming, costly, and error-prone task more efficient. Nevertheless, practical progress in this direction has been difficult to achieve due to a problem formulation and evaluation gap between research output and the real-world task. In order to address this gap, we introduce a new formulation for UMLS vocabulary insertion which mirrors the real-world task, datasets which faithfully represent it and several strong baselines we developed through re-purposing existing solutions. Additionally, we propose an effective rule-enhanced biomedical language model which enables important new model behavior, outperforms all strong baselines and provides measurable qualitative improvements to editors who carry out the UVI task. We hope this case study provides insight into the considerable importance of problem formulation for the success of translational NLP solutions.

The importance of systems that can extract structured information from textual data becomes increasingly pronounced given the ever-increasing volume of text produced on a daily basis. Having a system that can effectively extract such information in an interoperable manner would be an asset for several domains, be it finance, health, or legal. Recent developments in natural language processing led to the production of powerful language models that can, to some degree, mimic human intelligence. Such effectiveness raises a pertinent question: Can these models be leveraged for the extraction of structured information? In this work, we address this question by evaluating the capabilities of two state-of-the-art language models -- GPT-3 and GPT-3.5, commonly known as ChatGPT -- in the extraction of narrative entities, namely events, participants, and temporal expressions. This study is conducted on the Text2Story Lusa dataset, a collection of 119 Portuguese news articles whose annotation framework includes a set of entity structures along with several tags and attribute values. We first select the best prompt template through an ablation study over prompt components that provide varying degrees of information on a subset of documents of the dataset. Subsequently, we use the best templates to evaluate the effectiveness of the models on the remaining documents. The results obtained indicate that GPT models are competitive with out-of-the-box baseline systems, presenting an all-in-one alternative for practitioners with limited resources. By studying the strengths and limitations of these models in the context of information extraction, we offer insights that can guide future improvements and avenues to explore in this field.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司