When estimating area means, direct estimators based on area-specific data, are usually consistent under the sampling design without model assumptions. However, they are inefficient if the area sample size is small. In small area estimation, model assumptions linking the areas are used to "borrow strength" from other areas. The basic area-level model provides design-consistent estimators but error variances are assumed to be known. In practice, they are estimated with the (scarce) area-specific data. These estimators are inefficient, and their error is not accounted for in the associated mean squared error estimators. Unit-level models do not require to know the error variances but do not account for the survey design. Here we describe a unified estimator of an area mean that may be obtained both from an area-level model or a unit-level model and based on consistent estimators of the model error variances as the number of areas increases. We propose bootstrap mean squared error estimators that account for the uncertainty due to the estimation of the error variances. We show a better performance of the new small area estimators and our bootstrap estimators of the mean squared error. We apply the results to education data from Colombia.
Successfully addressing a wide variety of tasks is a core ability of autonomous agents, requiring flexibly adapting the underlying decision-making strategies and, as we argue in this work, also adapting the perception modules. An analogical argument would be the human visual system, which uses top-down signals to focus attention determined by the current task. Similarly, we adapt pre-trained large vision models conditioned on specific downstream tasks in the context of multi-task policy learning. We introduce task-conditioned adapters that do not require finetuning any pre-trained weights, combined with a single policy trained with behavior cloning and capable of addressing multiple tasks. We condition the visual adapters on task embeddings, which can be selected at inference if the task is known, or alternatively inferred from a set of example demonstrations. To this end, we propose a new optimization-based estimator. We evaluate the method on a wide variety of tasks from the CortexBench benchmark and show that, compared to existing work, it can be addressed with a single policy. In particular, we demonstrate that adapting visual features is a key design choice and that the method generalizes to unseen tasks given a few demonstrations.
The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.
Agent-based models (ABMs) are simulation models used in economics to overcome some of the limitations of traditional frameworks based on general equilibrium assumptions. However, agents within an ABM follow predetermined, not fully rational, behavioural rules which can be cumbersome to design and difficult to justify. Here we leverage multi-agent reinforcement learning (RL) to expand the capabilities of ABMs with the introduction of fully rational agents that learn their policy by interacting with the environment and maximising a reward function. Specifically, we propose a 'Rational macro ABM' (R-MABM) framework by extending a paradigmatic macro ABM from the economic literature. We show that gradually substituting ABM firms in the model with RL agents, trained to maximise profits, allows for a thorough study of the impact of rationality on the economy. We find that RL agents spontaneously learn three distinct strategies for maximising profits, with the optimal strategy depending on the level of market competition and rationality. We also find that RL agents with independent policies, and without the ability to communicate with each other, spontaneously learn to segregate into different strategic groups, thus increasing market power and overall profits. Finally, we find that a higher degree of rationality in the economy always improves the macroeconomic environment as measured by total output, depending on the specific rational policy, this can come at the cost of higher instability. Our R-MABM framework is general, it allows for stable multi-agent learning, and represents a principled and robust direction to extend existing economic simulators.
Using dominating sets to separate vertices of graphs is a well-studied problem in the larger domain of identification problems. In such problems, the objective is to choose a suitable dominating set $C$ of a graph $G$ such that the neighbourhoods of all vertices of $G$ have distinct intersections with $C$. Such a dominating and separating set $C$ is often referred to as a \emph{code} in the literature. Depending on the types of dominating and separating sets used, various problems arise under various names in the literature. In this paper, we introduce a new problem in the same realm of identification problems whereby the code, called \emph{open-separating dominating code}, or \emph{OSD-code} for short, is a dominating set and uses open neighbourhoods for separating vertices. The paper studies the fundamental properties concerning the existence, hardness and minimality of OSD-codes. Due to the emergence of a close and yet difficult to establish relation of the OSD-codes with another well-studied code in the literature called open locating dominating codes, or OLD-codes for short, we compare the two on various graph families. Finally, we also provide an equivalent reformulation of the problem of finding OSD-codes of a graph as a covering problem in a suitable hypergraph and discuss the polyhedra associated with OSD-codes, again in relation to OLD-codes of some graph families already studied in this context.
Distance correlation is a novel class of multivariate dependence measure, taking positive values between 0 and 1, and applicable to random vectors of arbitrary dimensions, not necessarily equal. It offers several advantages over the well-known Pearson correlation coefficient, the most important is that distance correlation equals zero if and only if the random vectors are independent. There are two different estimators of the distance correlation available in the literature. The first one, proposed by Sz\'ekely et al. (2007), is based on an asymptotically unbiased estimator of the distance covariance which turns out to be a V-statistic. The second one builds on an unbiased estimator of the distance covariance proposed in Sz\'ekely et al. (2014), proved to be an U-statistic by Sz\'ekely and Huo (2016). This study evaluates their efficiency (mean squared error) and compares computational times for both methods under different dependence structures. Under conditions of independence or near-independence, the V-estimates are biased, while the U-estimator frequently cannot be computed due to negative values. To address this challenge, a convex linear combination of the former estimators is proposed and studied, yielding good results regardless of the level of dependence.
A change point detection (CPD) framework assisted by a predictive machine learning model called "Predict and Compare" is introduced and characterised in relation to other state-of-the-art online CPD routines which it outperforms in terms of false positive rate and out-of-control average run length. The method's focus is on improving standard methods from sequential analysis such as the CUSUM rule in terms of these quality measures. This is achieved by replacing typically used trend estimation functionals such as the running mean with more sophisticated predictive models (Predict step), and comparing their prognosis with actual data (Compare step). The two models used in the Predict step are the ARIMA model and the LSTM recursive neural network. However, the framework is formulated in general terms, so as to allow the use of other prediction or comparison methods than those tested here. The power of the method is demonstrated in a tribological case study in which change points separating the run-in, steady-state, and divergent wear phases are detected in the regime of very few false positives.
Out-of-distribution (OOD) detection, crucial for reliable pattern classification, discerns whether a sample originates outside the training distribution. This paper concentrates on the high-dimensional features output by the final convolutional layer, which contain rich image features. Our key idea is to project these high-dimensional features into two specific feature subspaces, leveraging the dimensionality reduction capacity of the network's linear layers, trained with Predefined Evenly-Distribution Class Centroids (PEDCC)-Loss. This involves calculating the cosines of three projection angles and the norm values of features, thereby identifying distinctive information for in-distribution (ID) and OOD data, which assists in OOD detection. Building upon this, we have modified the batch normalization (BN) and ReLU layer preceding the fully connected layer, diminishing their impact on the output feature distributions and thereby widening the distribution gap between ID and OOD data features. Our method requires only the training of the classification network model, eschewing any need for input pre-processing or specific OOD data pre-tuning. Extensive experiments on several benchmark datasets demonstrates that our approach delivers state-of-the-art performance. Our code is available at //github.com/Hewell0/ProjOOD.
This paper presents a particle-based optimization method designed for addressing minimization problems with equality constraints, particularly in cases where the loss function exhibits non-differentiability or non-convexity. The proposed method combines components from consensus-based optimization algorithm with a newly introduced forcing term directed at the constraint set. A rigorous mean-field limit of the particle system is derived, and the convergence of the mean-field limit to the constrained minimizer is established. Additionally, we introduce a stable discretized algorithm and conduct various numerical experiments to demonstrate the performance of the proposed method.
Spectral estimation is a fundamental task in signal processing. Recent algorithms in quantum phase estimation are concerned with the large noise, large frequency regime of the spectral estimation problem. The recent work in Ding-Epperly-Lin-Zhang shows that the ESPRIT algorithm exhibits superconvergence behavior for the spike locations in terms of the maximum frequency. This note provides a perturbative analysis to explain this behavior. It also extends the discussion to the case where the noise grows with the sampling frequency.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.