亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Service platforms must determine rules for matching heterogeneous demand (customers) and supply (workers) that arrive randomly over time and may be lost if forced to wait too long for a match. Our objective is to maximize the cumulative value of matches, minus costs incurred when demand and supply wait. We develop a fluid model, that approximates the evolution of the stochastic model, and captures explicitly the nonlinear dependence between the amount of demand and supply waiting and the distribution of their patience times, also known as reneging or abandonment times in the literature. The fluid model invariant states approximate the steady-state mean queue-lengths in the stochastic system, and, therefore, can be used to develop an optimization problem whose optimal solution provides matching rates between demand and supply types that are asymptotically optimal (on fluid scale, as demand and supply rates grow large). We propose a discrete review matching policy that asymptotically achieves the optimal matching rates. We further show that when the aforementioned matching optimization problem has an optimal extreme point solution, which occurs when the patience time distributions have increasing hazard rate functions, a state-independent priority policy, that ranks the edges on the bipartite graph connecting demand and supply, is asymptotically optimal. A key insight from this analysis is that the ranking critically depends on the patience time distributions, and may be different for different distributions even if they have the same mean, demonstrating that models assuming, e.g., exponential patience times for tractability, may lack robustness. Finally, we observe that when holding costs are zero, a discrete review policy, that does not require knowledge of inter-arrival and patience time distributions, is asymptotically optimal.

相關內容

Due to their conceptual simplicity, k-means algorithm variants have been extensively used for unsupervised cluster analysis. However, one main shortcoming of these algorithms is that they essentially fit a mixture of identical spherical Gaussians to data that vastly deviates from such a distribution. In comparison, general Gaussian Mixture Models (GMMs) can fit richer structures but require estimating a quadratic number of parameters per cluster to represent the covariance matrices. This poses two main issues: (i) the underlying optimization problems are challenging due to their larger number of local minima, and (ii) their solutions can overfit the data. In this work, we design search strategies that circumvent both issues. We develop more effective optimization algorithms for general GMMs, and we combine these algorithms with regularization strategies that avoid overfitting. Through extensive computational analyses, we observe that optimization or regularization in isolation does not substantially improve cluster recovery. However, combining these techniques permits a completely new level of performance previously unachieved by k-means algorithm variants, unraveling vastly different cluster structures. These results shed new light on the current status quo between GMM and k-means methods and suggest the more frequent use of general GMMs for data exploration. To facilitate such applications, we provide open-source code as well as Julia packages (UnsupervisedClustering.jl and RegularizedCovarianceMatrices.jl) implementing the proposed techniques.

Traffic congestion is a persistent problem in our society. Previous methods for traffic control have proven futile in alleviating current congestion levels leading researchers to explore ideas with robot vehicles given the increased emergence of vehicles with different levels of autonomy on our roads. This gives rise to mixed traffic control, where robot vehicles regulate human-driven vehicles through reinforcement learning (RL). However, most existing studies use precise observations that require domain expertise and hand engineering for each road network's observation space. Additionally, precise observations use global information, such as environment outflow, and local information, i.e., vehicle positions and velocities. Obtaining this information requires updating existing road infrastructure with vast sensor environments and communication to potentially unwilling human drivers. We consider image observations, a modality that has not been extensively explored for mixed traffic control via RL, as the alternative: 1) images do not require a complete re-imagination of the observation space from environment to environment; 2) images are ubiquitous through satellite imagery, in-car camera systems, and traffic monitoring systems; and 3) images only require communication to equipment. In this work, we show robot vehicles using image observations can achieve competitive performance to using precise information on environments, including ring, figure eight, intersection, merge, and bottleneck. In certain scenarios, our approach even outperforms using precision observations, e.g., up to 8% increase in average vehicle velocity in the merge environment, despite only using local traffic information as opposed to global traffic information.

This work presents a comprehensive understanding of the estimation of a planted low-rank signal from a general spiked tensor model near the computational threshold. Relying on standard tools from the theory of large random matrices, we characterize the large-dimensional spectral behavior of the unfoldings of the data tensor and exhibit relevant signal-to-noise ratios governing the detectability of the principal directions of the signal. These results allow to accurately predict the reconstruction performance of truncated multilinear SVD (MLSVD) in the non-trivial regime. This is particularly important since it serves as an initialization of the higher-order orthogonal iteration (HOOI) scheme, whose convergence to the best low-multilinear-rank approximation depends entirely on its initialization. We give a sufficient condition for the convergence of HOOI and show that the number of iterations before convergence tends to $1$ in the large-dimensional limit.

Language model alignment has become an important component of AI safety, allowing safe interactions between humans and language models, by enhancing desired behaviors and inhibiting undesired ones. It is often done by tuning the model or inserting preset aligning prompts. Recently, representation engineering, a method which alters the model's behavior via changing its representations post-training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Representation engineering yields gains in alignment oriented tasks such as resistance to adversarial attacks and reduction of social biases, but was also shown to cause a decrease in the ability of the model to perform basic tasks. In this paper we study the tradeoff between the increase in alignment and decrease in helpfulness of the model. We propose a theoretical framework which provides bounds for these two quantities, and demonstrate their relevance empirically. Interestingly, we find that while the helpfulness generally decreases, it does so quadratically with the norm of the representation engineering vector, while the alignment increases linearly with it, indicating a regime in which it is efficient to use representation engineering. We validate our findings empirically, and chart the boundaries to the usefulness of representation engineering for alignment.

We consider speech enhancement for signals picked up in one noisy environment that must be rendered to a listener in another noisy environment. For both far-end noise reduction and near-end listening enhancement, it has been shown that excessive focus on noise suppression or intelligibility maximization may lead to excessive speech distortions and quality degradations in favorable noise conditions, where intelligibility is already at ceiling level. Recently [1,2] propose to remedy this with a minimum processing framework that either reduces noise or enhances listening a minimum amount given that a certain intelligibility criterion is still satisfied Additionally, it has been shown that joint consideration of both environments improves speech enhancement performance. In this paper, we formulate a joint far- and near-end minimum processing framework, that improves intelligibility while limiting speech distortions in favorable noise conditions. We provide closed-form solutions to specific boundary scenarios and investigate performance for the general case using numerical optimization. We also show concatenating existing minimum processing far- and near-end enhancement methods preserves the effects of the initial methods. Results show that the joint optimization can further improve performance compared to the concatenated approach.

We propose a fast method for solving compressed sensing, Lasso regression, and Logistic Lasso regression problems that iteratively runs an appropriate solver using an active set approach. We design a strategy to update the active set that achieves a large speedup over a single call of several solvers, including gradient projection for sparse reconstruction (GPSR), lassoglm of Matlab, and glmnet. For compressed sensing, the hybrid of our method and GPSR is 31.41 times faster than GPSR on average for Gaussian ensembles and 25.64 faster on average for binary ensembles. For Lasso regression, the hybrid of our method and GPSR achieves a 30.67-fold average speedup in our experiments. In our experiments on Logistic Lasso regression, the hybrid of our method and lassoglm gives an 11.95-fold average speedup, and the hybrid of our method and glmnet gives a 1.40-fold average speedup.

We propose novel "clustering and conquer" procedures for the parallel large-scale ranking and selection (R&S) problem, which leverage correlation information for clustering to break the bottleneck of sample efficiency. In parallel computing environments, correlation-based clustering can achieve an $\mathcal{O}(p)$ sample complexity reduction rate, which is the optimal reduction rate theoretically attainable. Our proposed framework is versatile, allowing for seamless integration of various prevalent R&S methods under both fixed-budget and fixed-precision paradigms. It can achieve improvements without the necessity of highly accurate correlation estimation and precise clustering. In large-scale AI applications such as neural architecture search, a screening-free version of our procedure surprisingly surpasses fully-sequential benchmarks in terms of sample efficiency. This suggests that leveraging valuable structural information, such as correlation, is a viable path to bypassing the traditional need for screening via pairwise comparison--a step previously deemed essential for high sample efficiency but problematic for parallelization. Additionally, we propose a parallel few-shot clustering algorithm tailored for large-scale problems.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

北京阿比特科技有限公司