亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While the difficulty of reinforcement learning problems is typically related to the complexity of their state spaces, Abstraction proposes that solutions often lie in simpler underlying latent spaces. Prior works have focused on learning either a continuous or dense abstraction, or require a human to provide one. Information-dense representations capture features irrelevant for solving tasks, and continuous spaces can struggle to represent discrete objects. In this work we automatically learn a sparse discrete abstraction of the underlying environment. We do so using a simple end-to-end trainable model based on the successor representation and max-entropy regularization. We describe an algorithm to apply our model, named Discrete State-Action Abstraction (DSAA), which computes an action abstraction in the form of temporally extended actions, i.e., Options, to transition between discrete abstract states. Empirically, we demonstrate the effects of different exploration schemes on our resulting abstraction, and show that it is efficient for solving downstream tasks.

相關內容

We propose a method for estimation and inference for bounds for heterogeneous causal effect parameters in general sample selection models where the treatment can affect whether an outcome is observed and no exclusion restrictions are available. The method provides conditional effect bounds as functions of policy relevant pre-treatment variables. It allows for conducting valid statistical inference on the unidentified conditional effects. We use a flexible debiased/double machine learning approach that can accommodate non-linear functional forms and high-dimensional confounders. Easily verifiable high-level conditions for estimation and misspecification robust inference guarantees are provided as well. Re-analyzing data from a large scale field experiment on Facebook, we find significant depolarization effects of counter-attitudinal news subscription nudges. The effect bounds are highly heterogeneous and suggest strong depolarization effects for moderates, conservatives, and younger users.

Intrinsic motivation is a promising exploration technique for solving reinforcement learning tasks with sparse or absent extrinsic rewards. There exist two technical challenges in implementing intrinsic motivation: 1) how to design a proper intrinsic objective to facilitate efficient exploration; and 2) how to combine the intrinsic objective with the extrinsic objective to help find better solutions. In the current literature, the intrinsic objectives are all designed in a task-agnostic manner and combined with the extrinsic objective via simple addition (or used by itself for reward-free pre-training). In this work, we show that these designs would fail in typical sparse-reward continuous control tasks. To address the problem, we propose Constrained Intrinsic Motivation (CIM) to leverage readily attainable task priors to construct a constrained intrinsic objective, and at the same time, exploit the Lagrangian method to adaptively balance the intrinsic and extrinsic objectives via a simultaneous-maximization framework. We empirically show, on multiple sparse-reward continuous control tasks, that our CIM approach achieves greatly improved performance and sample efficiency over state-of-the-art methods. Moreover, the key techniques of our CIM can also be plugged into existing methods to boost their performances.

Aspect Sentiment Triplet Extraction (ASTE) has become an emerging task in sentiment analysis research, aiming to extract triplets of the aspect term, its corresponding opinion term, and its associated sentiment polarity from a given sentence. Recently, many neural networks based models with different tagging schemes have been proposed, but almost all of them have their limitations: heavily relying on 1) prior assumption that each word is only associated with a single role (e.g., aspect term, or opinion term, etc. ) and 2) word-level interactions and treating each opinion/aspect as a set of independent words. Hence, they perform poorly on the complex ASTE task, such as a word associated with multiple roles or an aspect/opinion term with multiple words. Hence, we propose a novel approach, Span TAgging and Greedy infErence (STAGE), to extract sentiment triplets in span-level, where each span may consist of multiple words and play different roles simultaneously. To this end, this paper formulates the ASTE task as a multi-class span classification problem. Specifically, STAGE generates more accurate aspect sentiment triplet extractions via exploring span-level information and constraints, which consists of two components, namely, span tagging scheme and greedy inference strategy. The former tag all possible candidate spans based on a newly-defined tagging set. The latter retrieves the aspect/opinion term with the maximum length from the candidate sentiment snippet to output sentiment triplets. Furthermore, we propose a simple but effective model based on the STAGE, which outperforms the state-of-the-arts by a large margin on four widely-used datasets. Moreover, our STAGE can be easily generalized to other pair/triplet extraction tasks, which also demonstrates the superiority of the proposed scheme STAGE.

In this work we present a novel approach for computing correspondences between non-rigid objects, by exploiting a reduced representation of deformation fields. Different from existing works that represent deformation fields by training a general-purpose neural network, we advocate for an approximation based on mesh-free methods. By letting the network learn deformation parameters at a sparse set of positions in space (nodes), we reconstruct the continuous deformation field in a closed-form with guaranteed smoothness. With this reduction in degrees of freedom, we show significant improvement in terms of data-efficiency thus enabling limited supervision. Furthermore, our approximation provides direct access to first-order derivatives of deformation fields, which facilitates enforcing desirable regularization effectively. Our resulting model has high expressive power and is able to capture complex deformations. We illustrate its effectiveness through state-of-the-art results across multiple deformable shape matching benchmarks. Our code and data are publicly available at: //github.com/Sentient07/DeformationBasis.

Recent advances in representation learning have demonstrated an ability to represent information from different modalities such as video, text, and audio in a single high-level embedding vector. In this work we present a self-supervised learning framework that is able to learn a representation that captures finer levels of granularity across different modalities such as concepts or events represented by visual objects or spoken words. Our framework relies on a discretized embedding space created via vector quantization that is shared across different modalities. Beyond the shared embedding space, we propose a Cross-Modal Code Matching objective that forces the representations from different views (modalities) to have a similar distribution over the discrete embedding space such that cross-modal objects/actions localization can be performed without direct supervision. In our experiments we show that the proposed discretized multi-modal fine-grained representation (e.g., pixel/word/frame) can complement high-level summary representations (e.g., video/sentence/waveform) for improved performance on cross-modal retrieval tasks. We also observe that the discretized representation uses individual clusters to represent the same semantic concept across modalities.

Visual information extraction (VIE) has attracted considerable attention recently owing to its various advanced applications such as document understanding, automatic marking and intelligent education. Most existing works decoupled this problem into several independent sub-tasks of text spotting (text detection and recognition) and information extraction, which completely ignored the high correlation among them during optimization. In this paper, we propose a robust visual information extraction system (VIES) towards real-world scenarios, which is a unified end-to-end trainable framework for simultaneous text detection, recognition and information extraction by taking a single document image as input and outputting the structured information. Specifically, the information extraction branch collects abundant visual and semantic representations from text spotting for multimodal feature fusion and conversely, provides higher-level semantic clues to contribute to the optimization of text spotting. Moreover, regarding the shortage of public benchmarks, we construct a fully-annotated dataset called EPHOIE (//github.com/HCIILAB/EPHOIE), which is the first Chinese benchmark for both text spotting and visual information extraction. EPHOIE consists of 1,494 images of examination paper head with complex layouts and background, including a total of 15,771 Chinese handwritten or printed text instances. Compared with the state-of-the-art methods, our VIES shows significant superior performance on the EPHOIE dataset and achieves a 9.01% F-score gain on the widely used SROIE dataset under the end-to-end scenario.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司