亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid advancement in self-supervised learning (SSL) has highlighted its potential to leverage unlabeled data for learning rich visual representations. However, the existing SSL techniques, particularly those employing different augmentations of the same image, often rely on a limited set of simple transformations that are not representative of real-world data variations. This constrains the diversity and quality of samples, which leads to sub-optimal representations. In this paper, we introduce a novel framework that enriches the SSL paradigm by utilizing generative models to produce semantically consistent image augmentations. By directly conditioning generative models on a source image representation, our method enables the generation of diverse augmentations while maintaining the semantics of the source image, thus offering a richer set of data for self-supervised learning. Our extensive experimental results on various SSL methods demonstrate that our framework significantly enhances the quality of learned visual representations by up to 10\% Top-1 accuracy in downstream tasks. This research demonstrates that incorporating generative models into the SSL workflow opens new avenues for exploring the potential of synthetic data. This development paves the way for more robust and versatile representation learning techniques.

相關內容

Recent progress in self-supervised representation learning has resulted in models that are capable of extracting image features that are not only effective at encoding image level, but also pixel-level, semantics. These features have been shown to be effective for dense visual semantic correspondence estimation, even outperforming fully-supervised methods. Nevertheless, current self-supervised approaches still fail in the presence of challenging image characteristics such as symmetries and repeated parts. To address these limitations, we propose a new approach for semantic correspondence estimation that supplements discriminative self-supervised features with 3D understanding via a weak geometric spherical prior. Compared to more involved 3D pipelines, our model only requires weak viewpoint information, and the simplicity of our spherical representation enables us to inject informative geometric priors into the model during training. We propose a new evaluation metric that better accounts for repeated part and symmetry-induced mistakes. We present results on the challenging SPair-71k dataset, where we show that our approach demonstrates is capable of distinguishing between symmetric views and repeated parts across many object categories, and also demonstrate that we can generalize to unseen classes on the AwA dataset.

Humor understanding is an important and challenging research in natural language processing. As the popularity of pre-trained language models (PLMs), some recent work makes preliminary attempts to adopt PLMs for humor recognition and generation. However, these simple attempts do not substantially answer the question: {\em whether PLMs are capable of humor understanding?} This paper is the first work that systematically investigates the humor understanding ability of PLMs. For this purpose, a comprehensive framework with three evaluation steps and four evaluation tasks is designed. We also construct a comprehensive Chinese humor dataset, which can fully meet all the data requirements of the proposed evaluation framework. Our empirical study on the Chinese humor dataset yields some valuable observations, which are of great guiding value for future optimization of PLMs in humor understanding and generation.

There has been a surge of interest in computational modeling of semantic change. The foci of previous works are on detecting and interpreting word senses gained over time; however, it remains unclear whether the gained senses are covered by dictionaries. In this work, we aim to fill this research gap by comparing detected word senses with dictionary sense inventories in order to bridge between the communities of lexical semantic change detection and lexicography. We evaluate our system in the AXOLOTL-24 shared task for Finnish, Russian and German languages \cite{fedorova-etal-2024-axolotl}. Our system is fully unsupervised. It leverages a graph-based clustering approach to predict mappings between unknown word usages and dictionary entries for Subtask 1, and generates dictionary-like definitions for those novel word usages through the state-of-the-art Large Language Models such as GPT-4 and LLaMA-3 for Subtask 2. In Subtask 1, our system outperforms the baseline system by a large margin, and it offers interpretability for the mapping results by distinguishing between matched and unmatched (novel) word usages through our graph-based clustering approach. Our system ranks first in Finnish and German, and ranks second in Russian on the Subtask 2 test-phase leaderboard. These results show the potential of our system in managing dictionary entries, particularly for updating dictionaries to include novel sense entries. Our code and data are made publicly available\footnote{\url{//github.com/xiaohemaikoo/axolotl24-ABDN-NLP}}.

One hypothesis for the success of deep neural networks (DNNs) is that they are highly expressive, which enables them to be applied to many problems, and they have a strong inductive bias towards solutions that are simple, known as simplicity bias, which allows them to generalise well on unseen data because most real-world data is structured (i.e. simple). In this work, we explore the inductive bias and expressivity of quantum neural networks (QNNs), which gives us a way to compare their performance to those of DNNs. Our results show that it is possible to have simplicity bias with certain QNNs, but we prove that this type of QNN limits the expressivity of the QNN. We also show that it is possible to have QNNs with high expressivity, but they either have no inductive bias or a poor inductive bias and result in a worse generalisation performance compared to DNNs. We demonstrate that an artificial (restricted) inductive bias can be produced by intentionally restricting the expressivity of a QNN. Our results suggest a bias-expressivity tradeoff. Our conclusion is that the QNNs we studied can not generally offer an advantage over DNNs, because these QNNs either have a poor inductive bias or poor expressivity compared to DNNs.

Cross-Validation (CV) is the default choice for evaluating the performance of machine learning models. Despite its wide usage, their statistical benefits have remained half-understood, especially in challenging nonparametric regimes. In this paper we fill in this gap and show that in fact, for a wide spectrum of models, CV does not statistically outperform the simple "plug-in" approach where one reuses training data for testing evaluation. Specifically, in terms of both the asymptotic bias and coverage accuracy of the associated interval for out-of-sample evaluation, $K$-fold CV provably cannot outperform plug-in regardless of the rate at which the parametric or nonparametric models converge. Leave-one-out CV can have a smaller bias as compared to plug-in; however, this bias improvement is negligible compared to the variability of the evaluation, and in some important cases leave-one-out again does not outperform plug-in once this variability is taken into account. We obtain our theoretical comparisons via a novel higher-order Taylor analysis that allows us to derive necessary conditions for limit theorems of testing evaluations, which applies to model classes that are not amenable to previously known sufficient conditions. Our numerical results demonstrate that plug-in performs indeed no worse than CV across a wide range of examples.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

Graph Convolutional Networks (GCNs) have received increasing attention in recent machine learning. How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly optimizing the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the GEneralized Multi-relational Graph Convolutional Networks (GEM-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge-base embedding methods, and goes beyond. Our theoretical analysis shows that GEM-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of GEM-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

北京阿比特科技有限公司