Pairwise measures of dependence are a common tool to map data in the early stages of analysis with several modern examples based on maximized partitions of the pairwise sample space. Following a short survey of modern measures of dependence, we introduce a new measure which recursively splits the ranks of a pair of variables to partition the sample space and computes the $\chi^2$ statistic on the resulting bins. Splitting logic is detailed for splits maximizing a score function and randomly selected splits. Simulations indicate that random splitting produces a statistic conservatively approximated by the $\chi^2$ distribution without a loss of power to detect numerous different data patterns compared to maximized binning. Though it seems to add no power to detect dependence, maximized recursive binning is shown to produce a natural visualization of the data and the measure. Applying maximized recursive rank binning to S&P 500 constituent data suggests the automatic detection of tail dependence.
Protein design often begins with knowledge of a desired function from a motif which motif-scaffolding aims to construct a functional protein around. Recently, generative models have achieved breakthrough success in designing scaffolds for a diverse range of motifs. However, the generated scaffolds tend to lack structural diversity, which can hinder success in wet-lab validation. In this work, we extend FrameFlow, an SE(3) flow matching model for protein backbone generation, to perform motif-scaffolding with two complementary approaches. The first is motif amortization, in which FrameFlow is trained with the motif as input using a data augmentation strategy. The second is motif guidance, which performs scaffolding using an estimate of the conditional score from FrameFlow, and requires no additional training. Both approaches achieve an equivalent or higher success rate than previous state-of-the-art methods, with 2.5 times more structurally diverse scaffolds. Code: //github.com/ microsoft/frame-flow.
The separate tasks of denoising, least squares expectation, and manifold learning can often be posed in a common setting of finding the conditional expectations arising from a product of two random variables. This paper focuses on this more general problem and describes an operator theoretic approach to estimating the conditional expectation. Kernel integral operators are used as a compactification tool, to set up the estimation problem as a linear inverse problem in a reproducing kernel Hilbert space. This equation is shown to have solutions that allow numerical approximation, thus guaranteeing the convergence of data-driven implementations. The overall technique is easy to implement, and their successful application to some real-world problems are also shown.
We introduce a simple initialization of the Maubach bisection routine for adaptive mesh refinement which applies to any conforming initial triangulation. Using Maubach's routine with this initialization generates meshes that preserve shape regularity and satisfy the closure estimate needed for optimal convergence of adaptive schemes. Our ansatz allows for the intrinsic use of existing implementations.
Time-optimal control of a multi-rotor remains an open problem due to the under-actuation and nonlinearity of its dynamics, which make it difficult to solve this problem directly. In this paper, the time-optimal control problem of the multi-rotor is studied. Firstly, a thrust limit optimal decomposition method is proposed, which can reasonably decompose the limited thrust into three directions according to the current state and the target state. As a result, the thrust limit constraint is decomposed as a linear constraint. With the linear constraint and decoupled dynamics, a time-optimal guidance trajectory can be obtained. Then, a cost function is defined based on the time-optimal guidance trajectory, which has a quadratic form and can be used to evaluate the time-optimal performance of the system outputs. Finally, based on the cost function, the time-optimal control problem is reformulated as an MPC (Model Predictive Control) problem. The experimental results demonstrate the feasibility and validity of the proposed methods.
MDS codes have diverse practical applications in communication systems, data storage, and quantum codes due to their algebraic properties and optimal error-correcting capability. In this paper, we focus on a class of linear codes and establish some sufficient and necessary conditions for them being MDS. Notably, these codes differ from Reed-Solomon codes up to monomial equivalence. Additionally, we also explore the cases in which these codes are almost MDS or near MDS. Applying our main results, we determine the covering radii and deep holes of the dual codes associated with specific Roth-Lempel codes and discover an infinite family of (almost) optimally extendable codes with dimension three.
Contrastive dimension reduction methods have been developed for case-control study data to identify variation that is enriched in the foreground (case) data X relative to the background (control) data Y. Here, we develop contrastive regression for the setting when there is a response variable r associated with each foreground observation. This situation occurs frequently when, for example, the unaffected controls do not have a disease grade or intervention dosage but the affected cases have a disease grade or intervention dosage, as in autism severity, solid tumors stages, polyp sizes, or warfarin dosages. Our contrastive regression model captures shared low-dimensional variation between the predictors in the cases and control groups, and then explains the case-specific response variables through the variance that remains in the predictors after shared variation is removed. We show that, in one single-nucleus RNA sequencing dataset on autism severity in postmortem brain samples from donors with and without autism and in another single-cell RNA sequencing dataset on cellular differentiation in chronic rhinosinusitis with and without nasal polyps, our contrastive linear regression performs feature ranking and identifies biologically-informative predictors associated with response that cannot be identified using other approaches
Far-field speech recognition is a challenging task that conventionally uses signal processing beamforming to attack noise and interference problem. But the performance has been found usually limited due to heavy reliance on environmental assumption. In this paper, we propose a unified multichannel far-field speech recognition system that combines the neural beamforming and transformer-based Listen, Spell, Attend (LAS) speech recognition system, which extends the end-to-end speech recognition system further to include speech enhancement. Such framework is then jointly trained to optimize the final objective of interest. Specifically, factored complex linear projection (fCLP) has been adopted to form the neural beamforming. Several pooling strategies to combine look directions are then compared in order to find the optimal approach. Moreover, information of the source direction is also integrated in the beamforming to explore the usefulness of source direction as a prior, which is usually available especially in multi-modality scenario. Experiments on different microphone array geometry are conducted to evaluate the robustness against spacing variance of microphone array. Large in-house databases are used to evaluate the effectiveness of the proposed framework and the proposed method achieve 19.26\% improvement when compared with a strong baseline.
The Levin method is a well-known technique for evaluating oscillatory integrals, which operates by solving a certain ordinary differential equation in order to construct an antiderivative of the integrand. It was long believed that this approach suffers from "low-frequency breakdown," meaning that the accuracy of the calculated value of the integral deteriorates when the integrand is only slowly oscillating. Recently presented experimental evidence, however, suggests that if a Chebyshev spectral method is used to discretize the differential equation and the resulting linear system is solved via a truncated singular value decomposition, then no low-frequency breakdown occurs. Here, we provide a proof that this is the case, and our proof applies not only when the integrand is slowly oscillating, but even in the case of stationary points. Our result puts adaptive schemes based on the Levin method on a firm theoretical foundation and accounts for their behavior in the presence of stationary points. We go on to point out that by combining an adaptive Levin scheme with phase function methods for ordinary differential equations, a large class of oscillatory integrals involving special functions, including products of such functions and the compositions of such functions with slowly-varying functions, can be easily evaluated without the need for symbolic computations. Finally, we present the results of numerical experiments which illustrate the consequences of our analysis and demonstrate the properties of the adaptive Levin method.
When using resultants for elimination, one standard issue is that the resultant vanishes if the variety contains components of dimension larger than the expected dimension. J. Canny proposed an elegant construction, generalized characteristic polynomial, to address this issue by symbolically perturbing the system before the resultant computation. Such perturbed resultant would typically involve artefact components only loosely related to the geometry of the variety of interest. For removing these components, J.M. Rojas proposed to take the greatest common divisor of the results of two different perturbations. In this paper, we investigate this construction, and show that the extra components persistent under taking different perturbations must come either from singularities or from positive-dimensional fibers.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.