Given a set $P$ of $n$ points and a set $S$ of $m$ disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of $P$. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of $P$ by a line $\ell$. We present an $O((n+m)\log(n+m))$ time algorithm for the problem. This improves the previously best result of $O(nm+ n\log n)$ time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of $S$ are located on a line $\ell$ while points of $P$ can be anywhere in the plane. Our algorithm runs in $O((n+m)\log (m+ n)+m \log m\log n)$ time, which improves the previously best result of $O(nm\log(m+n))$ time. In addition, our results lead to an algorithm of $O(n^3\log n)$ time for a half-plane coverage problem (given $n$ half-planes and $n$ points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of $O(n^4\log n)$ time. Further, if all half-planes are lower ones, our algorithm runs in $O(n\log n)$ time while the previously best algorithm takes $O(n^2\log n)$ time.
We study the sample complexity of learning an $\epsilon$-optimal policy in an average-reward Markov decision process (MDP) under a generative model. For weakly communicating MDPs, we establish the complexity bound $\tilde{O}(SA\frac{H}{\epsilon^2})$, where $H$ is the span of the bias function of the optimal policy and $SA$ is the cardinality of the state-action space. Our result is the first that is minimax optimal (up to log factors) in all parameters $S,A,H$ and $\epsilon$, improving on existing work that either assumes uniformly bounded mixing times for all policies or has suboptimal dependence on the parameters. We further investigate sample complexity in general (non-weakly-communicating) average-reward MDPs. We argue a new transient time parameter $B$ is necessary, establish an $\tilde{O}(SA\frac{B+H}{\epsilon^2})$ complexity bound, and prove a matching (up to log factors) minimax lower bound. Both results are based on reducing the average-reward MDP to a discounted MDP, which requires new ideas in the general setting. To establish the optimality of this reduction, we develop improved bounds for $\gamma$-discounted MDPs, showing that $\tilde{\Omega}\left(SA\frac{H}{(1-\gamma)^2\epsilon^2}\right)$ samples suffice to learn an $\epsilon$-optimal policy in weakly communicating MDPs under the regime that $\gamma\geq 1-1/H$, and $\tilde{\Omega}\left(SA\frac{B+H}{(1-\gamma)^2\epsilon^2}\right)$ samples suffice in general MDPs when $\gamma\geq 1-\frac{1}{B+H}$. Both these results circumvent the well-known lower bound of $\tilde{\Omega}\left(SA\frac{1}{(1-\gamma)^3\epsilon^2}\right)$ for arbitrary $\gamma$-discounted MDPs. Our analysis develops upper bounds on certain instance-dependent variance parameters in terms of the span and transient time parameters. The weakly communicating bounds are tighter than those based on the mixing time or diameter of the MDP and may be of broader use.
Exploring the application of powerful large language models (LLMs) on the named entity recognition (NER) task has drawn much attention recently. This work pushes the performance boundary of zero-shot NER with LLMs by proposing a training-free self-improving framework, which utilizes an unlabeled corpus to stimulate the self-learning ability of LLMs. First, we use the LLM to make predictions on the unlabeled corpus using self-consistency and obtain a self-annotated dataset. Second, we explore various strategies to select reliable annotations to form a reliable self-annotated dataset. Finally, for each test input, we retrieve demonstrations from the reliable self-annotated dataset and perform inference via in-context learning. Experiments on four benchmarks show substantial performance improvements achieved by our framework. Through comprehensive experimental analysis, we find that increasing the size of unlabeled corpus or iterations of self-improving does not guarantee further improvement, but the performance might be boosted via more advanced strategies for reliable annotation selection. Code and data are publicly available at //github.com/Emma1066/Self-Improve-Zero-Shot-NER
Given a $K$-vertex simplex in a $d$-dimensional space, suppose we measure $n$ points on the simplex with noise (hence, some of the observed points fall outside the simplex). Vertex hunting is the problem of estimating the $K$ vertices of the simplex. A popular vertex hunting algorithm is successive projection algorithm (SPA). However, SPA is observed to perform unsatisfactorily under strong noise or outliers. We propose pseudo-point SPA (pp-SPA). It uses a projection step and a denoise step to generate pseudo-points and feed them into SPA for vertex hunting. We derive error bounds for pp-SPA, leveraging on extreme value theory of (possibly) high-dimensional random vectors. The results suggest that pp-SPA has faster rates and better numerical performances than SPA. Our analysis includes an improved non-asymptotic bound for the original SPA, which is of independent interest.
Given a simple undirected graph $G$, a quasi-clique is a subgraph of $G$ whose density is at least $\gamma$ $(0 < \gamma \leq 1)$. Finding a maximum quasi-clique has been addressed from two different perspectives: $i)$ maximizing vertex cardinality for a given edge density; and $ii)$ maximizing edge density for a given vertex cardinality. However, when no a priori preference information about cardinality and density is available, a more natural approach is to consider the problem from a multiobjective perspective. We introduce the Multiobjective Quasi-clique Problem (MOQC), which aims to find a quasi-clique by simultaneously maximizing both vertex cardinality and edge density. To efficiently address this problem, we explore the relationship among MOQC, its single-objective counterpart problems, and a biobjective optimization problem, along with several properties of the MOQC problem and quasi-cliques. We propose a baseline approach using $\varepsilon$-constraint scalarization and introduce a Two-phase strategy, which applies a dichotomic search based on weighted sum scalarization in the first phase and an $\varepsilon$-constraint methodology in the second phase. Additionally, we present a Three-phase strategy that combines the dichotomic search used in Two-phase with a vertex-degree-based local search employing novel sufficient conditions to assess quasi-clique efficiency, followed by an $\varepsilon$-constraint in a final stage. Experimental results on real-world sparse graphs indicate that the integrated use of dichotomic search and local search, together with mechanisms to assess quasi-clique efficiency, makes the Three-phase strategy an effective approach for solving the MOQC problem in terms of running time and ability to produce new efficient quasi-cliques.
A new $H(\textrm{divdiv})$-conforming finite element is presented, which avoids the need for super-smoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and $C^0$ discontinuous Galerkin methods for the biharmonic equation are derived.
A Homomorphic Secret Sharing (HSS) scheme is a secret-sharing scheme that shares a secret $x$ among $s$ servers, and additionally allows an output client to reconstruct some function $f(x)$ using information that can be locally computed by each server. A key parameter in HSS schemes is download rate, which quantifies how much information the output client needs to download from the servers. Often, download rate is improved by amortizing over $\ell$ instances of the problem, making $\ell$ also a key parameter of interest. Recent work (Fosli, Ishai, Kolobov, and Wootters 2022) established a limit on the download rate of linear HSS schemes for computing low-degree polynomials and constructed schemes that achieve this optimal download rate; their schemes required amortization over $\ell = \Omega(s \log(s))$ instances of the problem. Subsequent work (Blackwell and Wootters, 2023) completely characterized linear HSS schemes that achieve optimal download rate in terms of a coding-theoretic notion termed optimal labelweight codes. A consequence of this characterization was that $\ell = \Omega(s \log(s))$ is in fact necessary to achieve optimal download rate. In this paper, we characterize all linear HSS schemes, showing that schemes of any download rate are equivalent to a generalization of optimal labelweight codes. This equivalence is constructive and provides a way to obtain an explicit linear HSS scheme from any linear code. Using this characterization, we present explicit linear HSS schemes with slightly sub-optimal rate but with much improved amortization $\ell = O(s)$. Our constructions are based on algebraic geometry codes (specifically Hermitian codes and Goppa codes).
We give a procedure for computing group-level $(\epsilon, \delta)$-DP guarantees for DP-SGD, when using Poisson sampling or fixed batch size sampling. Up to discretization errors in the implementation, the DP guarantees computed by this procedure are tight (assuming we release every intermediate iterate).
We introduce a constructive analogue of $\Phi$-dimension, a notion of Hausdorff dimension developed using a restricted class of coverings of a set. A class of coverings $\Phi$ is said to be "faithful" to Hausdorff dimension if the $\Phi$-dimension and Hausdorff dimension coincide for every set. We prove a Point-to-Set Principle for $\Phi$-dimension, through which we get Point-to-Set Principles for Hausdorff Dimension, continued-fraction dimension and dimension of Cantor Coverings as special cases. Using the Point-to-Set Principle for Cantor coverings and a new technique for the construction of sequences satisfying a certain Kolmogorov complexity condition, we show that the notions of faithfulness of Cantor coverings at the Hausdorff and constructive levels are equivalent. We adapt the result by Albeverio, Ivanenko, Lebid, and Torbin to derive the necessary and sufficient conditions for the constructive dimension faithfulness of the coverings generated by the Cantor series expansion. This condition yields two general classes of representations of reals, one whose constructive dimensions that are equivalent to the constructive Hausdorff dimensions, and another, whose effective dimensions are different from the effective Hausdorff dimensions, completely classifying Cantor series expansions of reals.
A subset $S$ of vertices in a graph $G$ is a secure dominating set of $G$ if $S$ is a dominating set of $G$ and, for each vertex $u \not\in S$, there is a vertex $v \in S$ such that $uv$ is an edge and $(S \setminus \{v\}) \cup \{u\}$ is also a dominating set of $G$. The secure domination number of $G$, denoted by $\gamma_{s}(G)$, is the cardinality of a smallest secure dominating sets of $G$. In this paper, we prove that for any outerplanar graph with $n \geq 4$ vertices, $\gamma_{s}(G) \geq (n+4)/5$ and the bound is tight.
For a $P$-indexed persistence module ${\sf M}$, the (generalized) rank of ${\sf M}$ is defined as the rank of the limit-to-colimit map for ${\sf M}$ over the poset $P$. For $2$-parameter persistence modules, recently a zigzag persistence based algorithm has been proposed that takes advantage of the fact that generalized rank for $2$-parameter modules is equal to the number of full intervals in a zigzag module defined on the boundary of the poset. Analogous definition of boundary for $d$-parameter persistence modules or general $P$-indexed persistence modules does not seem plausible. To overcome this difficulty, we first unfold a given $P$-indexed module ${\sf M}$ into a zigzag module ${\sf M}_{ZZ}$ and then check how many full interval modules in a decomposition of ${\sf M}_{ZZ}$ can be folded back to remain full in ${\sf M}$. This number determines the generalized rank of ${\sf M}$. For special cases of degree-$d$ homology for $d$-complexes, we obtain a more efficient algorithm including a linear time algorithm for degree-$1$ homology in graphs.