This article develops a new algorithm named TTRISK to solve high-dimensional risk-averse optimization problems governed by differential equations (ODEs and/or PDEs) under uncertainty. As an example, we focus on the so-called Conditional Value at Risk (CVaR), but the approach is equally applicable to other coherent risk measures. Both the full and reduced space formulations are considered. The algorithm is based on low rank tensor approximations of random fields discretized using stochastic collocation. To avoid non-smoothness of the objective function underpinning the CVaR, we propose an adaptive strategy to select the width parameter of the smoothed CVaR to balance the smoothing and tensor approximation errors. Moreover, unbiased Monte Carlo CVaR estimate can be computed by using the smoothed CVaR as a control variate. To accelerate the computations, we introduce an efficient preconditioner for the KKT system in the full space formulation.The numerical experiments demonstrate that the proposed method enables accurate CVaR optimization constrained by large-scale discretized systems. In particular, the first example consists of an elliptic PDE with random coefficients as constraints. The second example is motivated by a realistic application to devise a lockdown plan for United Kingdom under COVID-19. The results indicate that the risk-averse framework is feasible with the tensor approximations under tens of random variables.
The present paper focuses on the problem of sampling from a given target distribution $\pi$ defined on some general state space. To this end, we introduce a novel class of non-reversible Markov chains, each chain being defined on an extended state space and having an invariant probability measure admitting $\pi$ as a marginal distribution. The proposed methodology is inspired by a new formulation of Kac's theorem and allows global and local dynamics to be smoothly combined. Under mild conditions, the corresponding Markov transition kernel can be shown to be irreducible and Harris recurrent. In addition, we establish that geometric ergodicity holds under appropriate conditions on the global and local dynamics. Finally, we illustrate numerically the use of the proposed method and its potential benefits in comparison to existing Markov chain Monte Carlo (MCMC) algorithms.
Due to the multi-linearity of tensors, most algorithms for tensor optimization problems are designed based on the block coordinate descent method. Such algorithms are widely employed by practitioners for their implementability and effectiveness. However, these algorithms usually suffer from the lack of theoretical guarantee of global convergence and analysis of convergence rate. In this paper, we propose a block coordinate descent type algorithm for the low rank partially orthogonal tensor approximation problem and analyse its convergence behaviour. To achieve this, we carefully investigate the variety of low rank partially orthogonal tensors and its geometric properties related to the parameter space, which enable us to locate KKT points of the concerned optimization problem. With the aid of these geometric properties, we prove without any assumption that: (1) Our algorithm converges globally to a KKT point; (2) For any given tensor, the algorithm exhibits an overall sublinear convergence with an explicit rate which is sharper than the usual $O(1/k)$ for first order methods in nonconvex optimization; {(3)} For a generic tensor, our algorithm converges $R$-linearly.
We establish how the coefficients of a sparse polynomial system influence the sum (or the trace) of its zeros. As an application, we develop numerical tests for verifying whether a set of solutions to a sparse system is complete. These algorithms extend the classical trace test in numerical algebraic geometry. Our results rely on both the analysis of the structure of sparse resultants as well as an extension of Esterov's results on monodromy groups of sparse systems.
We provide a deepened study of autocorrelations in Neural Markov Chain Monte Carlo simulations, a version of the traditional Metropolis algorithm which employs neural networks to provide independent proposals. We illustrate our ideas using the two-dimensional Ising model. We propose several estimates of autocorrelation times, some inspired by analytical results derived for the Metropolized Independent Sampler, which we compare and study as a function of inverse temperature $\beta$. Based on that we propose an alternative loss function and study its impact on the autocorelation times. Furthermore, we investigate the impact of imposing system symmetries ($Z_2$ and/or translational) in the neural network training process on the autocorrelation times. Eventually, we propose a scheme which incorporates partial heat-bath updates. The impact of the above enhancements is discussed for a $16 \times 16$ spin system. The summary of our findings may serve as a guide to the implementation of Neural Markov Chain Monte Carlo simulations of more complicated models.
The current paper studies the problem of minimizing a loss $f(\boldsymbol{x})$ subject to constraints of the form $\boldsymbol{D}\boldsymbol{x} \in S$, where $S$ is a closed set, convex or not, and $\boldsymbol{D}$ is a matrix that fuses parameters. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method with the proximal distance principle. The latter is driven by minimization of penalized objectives $f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2$ involving large tuning constants $\rho$ and the squared Euclidean distance of $\boldsymbol{D}\boldsymbol{x}$ from $S$. The next iterate $\boldsymbol{x}_{n+1}$ of the corresponding proximal distance algorithm is constructed from the current iterate $\boldsymbol{x}_n$ by minimizing the majorizing surrogate function $f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_{S}(\boldsymbol{D}\boldsymbol{x}_n)\|^2$. For fixed $\rho$ and a subanalytic loss $f(\boldsymbol{x})$ and a subanalytic constraint set $S$, we prove convergence to a stationary point. Under stronger assumptions, we provide convergence rates and demonstrate linear local convergence. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we compare against the alternating direction method of multipliers (ADMM). Our extensive numerical tests include problems on metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to a good condition number. These experiments demonstrate the superior speed and acceptable accuracy of our steepest variant on high-dimensional problems.
In many iterative optimization methods, fixed-point theory enables the analysis of the convergence rate via the contraction factor associated with the linear approximation of the fixed-point operator. While this factor characterizes the asymptotic linear rate of convergence, it does not explain the non-linear behavior of these algorithms in the non-asymptotic regime. In this letter, we take into account the effect of the first-order approximation error and present a closed-form bound on the convergence in terms of the number of iterations required for the distance between the iterate and the limit point to reach an arbitrarily small fraction of the initial distance. Our bound includes two terms: one corresponds to the number of iterations required for the linearized version of the fixed-point operator and the other corresponds to the overhead associated with the approximation error. With a focus on the convergence in the scalar case, the tightness of the proposed bound is proven for positively quadratic first-order difference equations.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.