亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Simultaneous sequence generation is a pivotal task for real-time scenarios, such as streaming speech recognition, simultaneous machine translation and simultaneous speech translation, where the target sequence is generated while receiving the source sequence. The crux of achieving high-quality generation with low latency lies in identifying the optimal moments for generating, accomplished by learning a mapping between the source and target sequences. However, existing methods often rely on task-specific heuristics for different sequence types, limiting the model's capacity to adaptively learn the source-target mapping and hindering the exploration of multi-task learning for various simultaneous tasks. In this paper, we propose a unified segment-to-segment framework (Seg2Seg) for simultaneous sequence generation, which learns the mapping in an adaptive and unified manner. During the process of simultaneous generation, the model alternates between waiting for a source segment and generating a target segment, making the segment serve as the natural bridge between the source and target. To accomplish this, Seg2Seg introduces a latent segment as the pivot between source to target and explores all potential source-target mappings via the proposed expectation training, thereby learning the optimal moments for generating. Experiments on multiple simultaneous generation tasks demonstrate that Seg2Seg achieves state-of-the-art performance and exhibits better generality across various tasks.

相關內容

Given an image and a natural language expression as input, the goal of referring image segmentation is to segment the foreground masks of the entities referred by the expression. Existing methods mainly focus on interactive learning between vision and language to enhance the multi-modal representations for global context reasoning. However, predicting directly in pixel-level space can lead to collapsed positioning and poor segmentation results. Its main challenge lies in how to explicitly model entity localization, especially for non-salient entities. In this paper, we tackle this problem by executing a Collaborative Position Reasoning Network (CPRN) via the proposed novel Row-and-Column interactive (RoCo) and Guided Holistic interactive (Holi) modules. Specifically, RoCo aggregates the visual features into the row- and column-wise features corresponding two directional axes respectively. It offers a fine-grained matching behavior that perceives the associations between the linguistic features and two decoupled visual features to perform position reasoning over a hierarchical space. Holi integrates features of the two modalities by a cross-modal attention mechanism, which suppresses the irrelevant redundancy under the guide of positioning information from RoCo. Thus, with the incorporation of RoCo and Holi modules, CPRN captures the visual details of position reasoning so that the model can achieve more accurate segmentation. To our knowledge, this is the first work that explicitly focuses on position reasoning modeling. We also validate the proposed method on three evaluation datasets. It consistently outperforms existing state-of-the-art methods.

The manifold scattering transform is a deep feature extractor for data defined on a Riemannian manifold. It is one of the first examples of extending convolutional neural network-like operators to general manifolds. The initial work on this model focused primarily on its theoretical stability and invariance properties but did not provide methods for its numerical implementation except in the case of two-dimensional surfaces with predefined meshes. In this work, we present practical schemes, based on the theory of diffusion maps, for implementing the manifold scattering transform to datasets arising in naturalistic systems, such as single cell genetics, where the data is a high-dimensional point cloud modeled as lying on a low-dimensional manifold. We show that our methods are effective for signal classification and manifold classification tasks.

We prove that the long-run behavior of Hawkes processes is fully determined by the average number and the dispersion of child events. For subcritical processes we provide FLLNs and FCLTs under minimal conditions on the kernel of the process with the precise form of the limit theorems depending strongly on the dispersion of child events. For a critical Hawkes process with weakly dispersed child events, functional central limit theorems do not hold. Instead, we prove that the rescaled intensity processes and rescaled Hawkes processes behave like CIR-processes without mean-reversion, respectively integrated CIR-processes. We provide the rate of convergence by establishing an upper bound on the Wasserstein distance between the distributions of rescaled Hawkes process and the corresponding limit process. By contrast, critical Hawkes process with heavily dispersed child events share many properties of subcritical ones. In particular, functional limit theorems hold. However, unlike subcritical processes critical ones with heavily dispersed child events display long-range dependencies.

The manipulation of deformable objects by robotic systems presents a significant challenge due to their complex and infinite-dimensional configuration spaces. This paper introduces a novel approach to Deformable Object Manipulation (DOM) by emphasizing the identification and manipulation of Structures of Interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a Graph Neural Network (GNN)-based latent dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves constructing a graph representation from partial point cloud data of the object and learning the latent dynamics model that effectively captures the essential deformations of the fabric bag within a reduced computational space. By integrating this latent dynamics model with Model Predictive Control (MPC), we empower robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We have validated our framework through various empirical experiments demonstrating its efficacy in bimanual manipulation of fabric bags. Our contributions not only address the complexities inherent in DOM but also provide new perspectives and methodologies for enhancing robotic interactions with deformable objects by concentrating on their critical structural elements. Experimental videos can be obtained from //sites.google.com/view/bagbot.

Pseudorange errors are the root cause of localization inaccuracy in GPS. Previous data-driven methods regress and eliminate pseudorange errors using handcrafted intermediate labels. Unlike them, we propose an end-to-end GPS localization framework, E2E-PrNet, to train a neural network for pseudorange correction (PrNet) directly using the final task loss calculated with the ground truth of GPS receiver states. The gradients of the loss with respect to learnable parameters are backpropagated through a differentiable nonlinear least squares optimizer to PrNet. The feasibility is verified with GPS data collected by Android phones, showing that E2E-PrNet outperforms the state-of-the-art end-to-end GPS localization methods.

Behemoth graphs are often fragmented and separately stored by multiple data owners as distributed subgraphs in many realistic applications. Without harming data privacy, it is natural to consider the subgraph federated learning (subgraph FL) scenario, where each local client holds a subgraph of the entire global graph, to obtain globally generalized graph mining models. To overcome the unique challenge of incomplete information propagation on local subgraphs due to missing cross-subgraph neighbors, previous works resort to the augmentation of local neighborhoods through the joint FL of missing neighbor generators and GNNs. Yet their technical designs have profound limitations regarding the utility, efficiency, and privacy goals of FL. In this work, we propose FedDEP to comprehensively tackle these challenges in subgraph FL. FedDEP consists of a series of novel technical designs: (1) Deep neighbor generation through leveraging the GNN embeddings of potential missing neighbors; (2) Efficient pseudo-FL for neighbor generation through embedding prototyping; and (3) Privacy protection through noise-less edge-local-differential-privacy. We analyze the correctness and efficiency of FedDEP, and provide theoretical guarantees on its privacy. Empirical results on four real-world datasets justify the clear benefits of proposed techniques.

We introduce a novel approach that combines tactile estimation and control for in-hand object manipulation. By integrating measurements from robot kinematics and an image-based tactile sensor, our framework estimates and tracks object pose while simultaneously generating motion plans to control the pose of a grasped object. This approach consists of a discrete pose estimator that uses the Viterbi decoding algorithm to find the most likely sequence of object poses in a coarsely discretized grid, and a continuous pose estimator-controller to refine the pose estimate and accurately manipulate the pose of the grasped object. Our method is tested on diverse objects and configurations, achieving desired manipulation objectives and outperforming single-shot methods in estimation accuracy. The proposed approach holds potential for tasks requiring precise manipulation in scenarios where visual perception is limited, laying the foundation for closed-loop behavior applications such as assembly and tool use. Please see supplementary videos for real-world demonstration at //sites.google.com/view/texterity.

A lip-syncing deepfake is a digitally manipulated video in which a person's lip movements are created convincingly using AI models to match altered or entirely new audio. Lip-syncing deepfakes are a dangerous type of deepfakes as the artifacts are limited to the lip region and more difficult to discern. In this paper, we describe a novel approach, LIP-syncing detection based on mouth INConsistency (LIPINC), for lip-syncing deepfake detection by identifying temporal inconsistencies in the mouth region. These inconsistencies are seen in the adjacent frames and throughout the video. Our model can successfully capture these irregularities and outperforms the state-of-the-art methods on several benchmark deepfake datasets.

We address a key challenge for neuro-symbolic (NeSy) systems by leveraging convex and bilevel optimization techniques to develop a general gradient-based framework for end-to-end neural and symbolic parameter learning. The applicability of our framework is demonstrated with NeuPSL, a state-of-the-art NeSy architecture. To achieve this, we propose a smooth primal and dual formulation of NeuPSL inference and show learning gradients are functions of the optimal dual variables. Additionally, we develop a dual block coordinate descent algorithm for the new formulation that naturally exploits warm-starts. This leads to over 100x learning runtime improvements over the current best NeuPSL inference method. Finally, we provide extensive empirical evaluations across $8$ datasets covering a range of tasks and demonstrate our learning framework achieves up to a 16% point prediction performance improvement over alternative learning methods.

HUB format is an emerging technique to improve the hardware and time requirement when round to nearest is needed. On the other hand, RISC-V is an open-source ISA that many companies currently use in their designs. This paper presents a tailored floating point HUB adder implemented in the Sargantana RISC-V processor.

北京阿比特科技有限公司