Existing datasets for automated fact-checking have substantial limitations, such as relying on artificial claims, lacking annotations for evidence and intermediate reasoning, or including evidence published after the claim. In this paper we introduce AVeriTeC, a new dataset of 4,568 real-world claims covering fact-checks by 50 different organizations. Each claim is annotated with question-answer pairs supported by evidence available online, as well as textual justifications explaining how the evidence combines to produce a verdict. Through a multi-round annotation process, we avoid common pitfalls including context dependence, evidence insufficiency, and temporal leakage, and reach a substantial inter-annotator agreement of $\kappa=0.619$ on verdicts. We develop a baseline as well as an evaluation scheme for verifying claims through several question-answering steps against the open web.
The rapid advances of large language models (LLMs), such as ChatGPT, are revolutionizing data science and statistics. These state-of-the-art tools can streamline complex processes. As a result, it reshapes the role of data scientists. We argue that LLMs are transforming the responsibilities of data scientists, shifting their focus from hands-on coding, data-wrangling and conducting standard analyses to assessing and managing analyses performed by these automated AIs. This evolution of roles is reminiscent of the transition from a software engineer to a product manager. We illustrate this transition with concrete data science case studies using LLMs in this paper. These developments necessitate a meaningful evolution in data science education. Pedagogy must now place greater emphasis on cultivating diverse skillsets among students, such as LLM-informed creativity, critical thinking, AI-guided programming. LLMs can also play a significant role in the classroom as interactive teaching and learning tools, contributing to personalized education. This paper discusses the opportunities, resources and open challenges for each of these directions. As with any transformative technology, integrating LLMs into education calls for careful consideration. While LLMs can perform repetitive tasks efficiently, it's crucial to remember that their role is to supplement human intelligence and creativity, not to replace it. Therefore, the new era of data science education should balance the benefits of LLMs while fostering complementary human expertise and innovations. In conclusion, the rise of LLMs heralds a transformative period for data science and its education. This paper seeks to shed light on the emerging trends, potential opportunities, and challenges accompanying this paradigm shift, hoping to spark further discourse and investigation into this exciting, uncharted territory.
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: //github.com/MLGroupJLU/LLM-eval-survey.
As cyber-attacks continue to increase in frequency and sophistication, organisations must be better prepared to face the reality of an incident. Any organisational plan that intends to be successful at managing security risks must clearly understand the harm (i.e., negative impact) and the various parties affected in the aftermath of an attack. To this end, this article conducts a novel exploration into the multitude of real-world harms that can arise from cyber-attacks, with a particular focus on ransomware incidents given their current prominence. This exploration also leads to the proposal of a new, robust methodology for modelling harms from such incidents. We draw on publicly-available case data on high-profile ransomware incidents to examine the types of harm that emerge at various stages after a ransomware attack and how harms (e.g., an offline enterprise server) may trigger other negative, potentially more substantial impacts for stakeholders (e.g., the inability for a customer to access their social welfare benefits or bank account). Prominent findings from our analysis include the identification of a notable set of social/human harms beyond the business itself (and beyond the financial payment of a ransom) and a complex web of harms that emerge after attacks regardless of the industry sector. We also observed that deciphering the full extent and sequence of harms can be a challenging undertaking because of the lack of complete data available. This paper consequently argues for more transparency on ransomware harms, as it would lead to a better understanding of the realities of these incidents to the benefit of organisations and society more generally.
Advanced manipulation techniques have provided criminals with opportunities to make social panic or gain illicit profits through the generation of deceptive media, such as forged face images. In response, various deepfake detection methods have been proposed to assess image authenticity. Sequential deepfake detection, which is an extension of deepfake detection, aims to identify forged facial regions with the correct sequence for recovery. Nonetheless, due to the different combinations of spatial and sequential manipulations, forged face images exhibit substantial discrepancies that severely impact detection performance. Additionally, the recovery of forged images requires knowledge of the manipulation model to implement inverse transformations, which is difficult to ascertain as relevant techniques are often concealed by attackers. To address these issues, we propose Multi-Collaboration and Multi-Supervision Network (MMNet) that handles various spatial scales and sequential permutations in forged face images and achieve recovery without requiring knowledge of the corresponding manipulation method. Furthermore, existing evaluation metrics only consider detection accuracy at a single inferring step, without accounting for the matching degree with ground-truth under continuous multiple steps. To overcome this limitation, we propose a novel evaluation metric called Complete Sequence Matching (CSM), which considers the detection accuracy at multiple inferring steps, reflecting the ability to detect integrally forged sequences. Extensive experiments on several typical datasets demonstrate that MMNet achieves state-of-the-art detection performance and independent recovery performance.
Supervised learning typically focuses on learning transferable representations from training examples annotated by humans. While rich annotations (like soft labels) carry more information than sparse annotations (like hard labels), they are also more expensive to collect. For example, while hard labels only provide information about the closest class an object belongs to (e.g., "this is a dog"), soft labels provide information about the object's relationship with multiple classes (e.g., "this is most likely a dog, but it could also be a wolf or a coyote"). We use information theory to compare how a number of commonly-used supervision signals contribute to representation-learning performance, as well as how their capacity is affected by factors such as the number of labels, classes, dimensions, and noise. Our framework provides theoretical justification for using hard labels in the big-data regime, but richer supervision signals for few-shot learning and out-of-distribution generalization. We validate these results empirically in a series of experiments with over 1 million crowdsourced image annotations and conduct a cost-benefit analysis to establish a tradeoff curve that enables users to optimize the cost of supervising representation learning on their own datasets.
The Data Science domain has expanded monumentally in both research and industry communities during the past decade, predominantly owing to the Big Data revolution. Artificial Intelligence (AI) and Machine Learning (ML) are bringing more complexities to data engineering applications, which are now integrated into data processing pipelines to process terabytes of data. Typically, a significant amount of time is spent on data preprocessing in these pipelines, and hence improving its e fficiency directly impacts the overall pipeline performance. The community has recently embraced the concept of Dataframes as the de-facto data structure for data representation and manipulation. However, the most widely used serial Dataframes today (R, pandas) experience performance limitations while working on even moderately large data sets. We believe that there is plenty of room for improvement by taking a look at this problem from a high-performance computing point of view. In a prior publication, we presented a set of parallel processing patterns for distributed dataframe operators and the reference runtime implementation, Cylon [1]. In this paper, we are expanding on the initial concept by introducing a cost model for evaluating the said patterns. Furthermore, we evaluate the performance of Cylon on the ORNL Summit supercomputer.
Data economy relies on data-driven systems and complex machine learning applications are fueled by them. Unfortunately, however, machine learning models are exposed to fraudulent activities and adversarial attacks, which threaten their security and trustworthiness. In the last decade or so, the research interest on adversarial machine learning has grown significantly, revealing how learning applications could be severely impacted by effective attacks. Although early results of adversarial machine learning indicate the huge potential of the approach to specific domains such as image processing, still there is a gap in both the research literature and practice regarding how to generalize adversarial techniques in other domains and applications. Fraud detection is a critical defense mechanism for data economy, as it is for other applications as well, which poses several challenges for machine learning. In this work, we describe how attacks against fraud detection systems differ from other applications of adversarial machine learning, and propose a number of interesting directions to bridge this gap.
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.