亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Self-supervised pre-training of image encoders is omnipresent in the literature, particularly following the introduction of Masked autoencoders (MAE). Current efforts attempt to learn object-centric representations from motion in videos. In particular, SiamMAE recently introduced a Siamese network, training a shared-weight encoder from two frames of a video with a high asymmetric masking ratio (95%). In this work, we propose CropMAE, an alternative approach to the Siamese pre-training introduced by SiamMAE. Our method specifically differs by exclusively considering pairs of cropped images sourced from the same image but cropped differently, deviating from the conventional pairs of frames extracted from a video. CropMAE therefore alleviates the need for video datasets, while maintaining competitive performances and drastically reducing pre-training time. Furthermore, we demonstrate that CropMAE learns similar object-centric representations without explicit motion, showing that current self-supervised learning methods do not learn objects from motion, but rather thanks to the Siamese architecture. Finally, CropMAE achieves the highest masking ratio to date (98.5%), enabling the reconstruction of images using only two visible patches. Our code is available at //github.com/alexandre-eymael/CropMAE.

相關內容

Self-supervised learning for image denoising problems in the presence of denaturation for noisy data is a crucial approach in machine learning. However, theoretical understanding of the performance of the approach that uses denatured data is lacking. To provide better understanding of the approach, in this paper, we analyze a self-supervised denoising algorithm that uses denatured data in depth through theoretical analysis and numerical experiments. Through the theoretical analysis, we discuss that the algorithm finds desired solutions to the optimization problem with the population risk, while the guarantee for the empirical risk depends on the hardness of the denoising task in terms of denaturation levels. We also conduct several experiments to investigate the performance of an extended algorithm in practice. The results indicate that the algorithm training with denatured images works, and the empirical performance aligns with the theoretical results. These results suggest several insights for further improvement of self-supervised image denoising that uses denatured data in future directions.

In wireless communications, transforming network into graphs and processing them using deep learning models, such as Graph Neural Networks (GNNs), is one of the mainstream network optimization approaches. While effective, the generative AI (GAI) shows stronger capabilities in graph analysis, processing, and generation, than conventional methods such as GNN, offering a broader exploration space for graph-based network optimization. Therefore, this article proposes to use GAI-based graph generation to support wireless networks. Specifically, we first explore applications of graphs in wireless networks. Then, we introduce and analyze common GAI models from the perspective of graph generation. On this basis, we propose a framework that incorporates the conditional diffusion model and an evaluation network, which can be trained with reward functions and conditions customized by network designers and users. Once trained, the proposed framework can create graphs based on new conditions, helping to tackle problems specified by the user in wireless networks. Finally, using the link selection in integrated sensing and communication (ISAC) as an example, the effectiveness of the proposed framework is validated.

Multimodal emotion recognition (MER) in practical scenarios is significantly challenged by the presence of missing or incomplete data across different modalities. To overcome these challenges, researchers have aimed to simulate incomplete conditions during the training phase to enhance the system's overall robustness. Traditional methods have often involved discarding data or substituting data segments with zero vectors to approximate these incompletenesses. However, such approaches neither accurately represent real-world conditions nor adequately address the issue of noisy data availability. For instance, a blurry image cannot be simply replaced with zero vectors, and still retain information. To tackle this issue and develop a more precise MER system, we introduce a novel noise-robust MER model that effectively learns robust multimodal joint representations from noisy data. This approach includes two pivotal components: firstly, a noise scheduler that adjusts the type and level of noise in the data to emulate various realistic incomplete situations. Secondly, a Variational AutoEncoder (VAE)-based module is employed to reconstruct these robust multimodal joint representations from the noisy inputs. Notably, the introduction of the noise scheduler enables the exploration of an entirely new type of incomplete data condition, which is impossible with existing methods. Extensive experimental evaluations on the benchmark datasets IEMOCAP and CMU-MOSEI demonstrate the effectiveness of the noise scheduler and the excellent performance of our proposed model.

While recommender systems with multi-modal item representations (image, audio, and text), have been widely explored, learning recommendations from multi-modal user interactions (e.g., clicks and speech) remains an open problem. We study the case of multi-modal user interactions in a setting where users engage with a service provider through multiple channels (website and call center). In such cases, incomplete modalities naturally occur, since not all users interact through all the available channels. To address these challenges, we publish a real-world dataset that allows progress in this under-researched area. We further present and benchmark various methods for leveraging multi-modal user interactions for item recommendations, and propose a novel approach that specifically deals with missing modalities by mapping user interactions to a common feature space. Our analysis reveals important interactions between the different modalities and that a frequently occurring modality can enhance learning from a less frequent one.

Deep neural classifiers tend to rely on spurious correlations between spurious attributes of inputs and targets to make predictions, which could jeopardize their generalization capability. Training classifiers robust to spurious correlations typically relies on annotations of spurious correlations in data, which are often expensive to get. In this paper, we tackle an annotation-free setting and propose a self-guided spurious correlation mitigation framework. Our framework automatically constructs fine-grained training labels tailored for a classifier obtained with empirical risk minimization to improve its robustness against spurious correlations. The fine-grained training labels are formulated with different prediction behaviors of the classifier identified in a novel spuriousness embedding space. We construct the space with automatically detected conceptual attributes and a novel spuriousness metric which measures how likely a class-attribute correlation is exploited for predictions. We demonstrate that training the classifier to distinguish different prediction behaviors reduces its reliance on spurious correlations without knowing them a priori and outperforms prior methods on five real-world datasets.

Q-learning excels in learning from feedback within sequential decision-making tasks but requires extensive sampling for significant improvements. Although reward shaping is a powerful technique for enhancing learning efficiency, it can introduce biases that affect agent performance. Furthermore, potential-based reward shaping is constrained as it does not allow for reward modifications based on actions or terminal states, potentially limiting its effectiveness in complex environments. Additionally, large language models (LLMs) can achieve zero-shot learning, but this is generally limited to simpler tasks. They also exhibit low inference speeds and occasionally produce hallucinations. To address these issues, we propose \textbf{LLM-guided Q-learning} that employs LLMs as heuristic to aid in learning the Q-function for reinforcement learning. It combines the advantages of both technologies without introducing performance bias. Our theoretical analysis demonstrates that the LLM heuristic provides action-level guidance. Additionally, our architecture has the capability to convert the impact of hallucinations into exploration costs. Moreover, the converged Q function corresponds to the MDP optimal Q function. Experiment results demonstrated that our algorithm enables agents to avoid ineffective exploration, enhances sampling efficiency, and is well-suited for complex control tasks.

Coded caching (CC) can substantially enhance network performance by leveraging memory as an additional communication resource. However, the use of CC is challenging in various practical applications due to dynamic user behavior. The existing solutions, based on shared caching, cannot directly handle all scenarios where users freely enter and depart the network at any time as they are constrained by specific conditions on network parameters. This paper proposes a universally applicable shared-caching scheme for dynamic setups without any restriction on network parameters. The closed-form expressions for the achievable degrees of freedom (DoF) are computed for the resulting generalized scheme, and are shown to achieve the existing optimal bounds of the shared-cache model. Furthermore, a successive-interference-cancellation-free extension based on a fast iterative optimized beamformer design is devised to optimize the use of excess spatial dimensions freed by cache-aided interference cancellation. Extensive numerical experiments are carried out to assess the performance of the proposed scheme. In particular, the results demonstrate that while a dynamic setup may achieve a DoF substantially lower than the optimal DoF of shared caching, our proposed scheme significantly improves the performance at the finite signal-to-noise ratio compared to unicasting, which only benefits from the local caching gain.

This paper introduces a method of identifying a maximal set of safe strategies from data for stochastic systems with unknown dynamics using barrier certificates. The first step is learning the dynamics of the system via Gaussian process (GP) regression and obtaining probabilistic errors for this estimate. Then, we develop an algorithm for constructing piecewise stochastic barrier functions to find a maximal permissible strategy set using the learned GP model, which is based on sequentially pruning the worst controls until a maximal set is identified. The permissible strategies are guaranteed to maintain probabilistic safety for the true system. This is especially important for learning-enabled systems, because a rich strategy space enables additional data collection and complex behaviors while remaining safe. Case studies on linear and nonlinear systems demonstrate that increasing the size of the dataset for learning the system grows the permissible strategy set.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources

北京阿比特科技有限公司