亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In matched observational studies, the inferred causal conclusions pretending that matching has taken into account all confounding can be sensitive to unmeasured confounding. In such cases, a sensitivity analysis is often conducted, which investigates whether the observed association between treatment and outcome is due to effects caused by the treatment or it is due to hidden confounding. In general, a sensitivity analysis tries to infer the minimum amount of hidden biases needed in order to explain away the observed association between treatment and outcome, assuming that the treatment has no effect. If the needed bias is large, then the treatment is likely to have significant effects. The Rosenbaum sensitivity analysis is a modern approach for conducting sensitivity analysis for matched observational studies. It investigates what magnitude the maximum of the hidden biases from all matched sets needs to be in order to explain away the observed association, assuming that the treatment has no effect. However, such a sensitivity analysis can be overly conservative and pessimistic, especially when the investigators believe that some matched sets may have exceptionally large hidden biases. In this paper, we generalize Rosenbaum's framework to conduct sensitivity analysis on quantiles of hidden biases from all matched sets, which are more robust than the maximum. Moreover, we demonstrate that the proposed sensitivity analysis on all quantiles of hidden biases is simultaneously valid and is thus a free lunch added to the conventional sensitivity analysis. The proposed approach works for general outcomes, general matched studies and general test statistics. Finally, we demonstrate that the proposed sensitivity analysis also works for bounded null hypotheses as long as the test statistic satisfies certain properties. An R package implementing the proposed method is also available online.

相關內容

The feature interaction problem occurs when two or more independently developed components interact with each other in unanticipated ways, resulting in undesirable system behaviors. Feature interaction problems remain a challenge for emerging domains in cyber-physical systems (CPS), such as the Internet of Things and autonomous drones. Existing techniques for resolving feature interactions take a "winner-takes-all" approach, where one out of the conflicting features is selected as the most desirable one, and the rest are disabled. However, when multiple of the conflicting features fulfill important system requirements, being forced to select one of them can result in an undesirable system outcome. In this paper, we propose a new resolution approach that allows all of the conflicting features to continue to partially fulfill their requirements during the resolution process. In particular, our approach leverages the idea of adaptive requirement weakening, which involves one or more features temporarily weakening their level of performance in order to co-exist with the other features in a consistent manner. Given feature requirements specified in Signal Temporal Logic (STL), we propose an automated method and a runtime architecture for automatically weakening the requirements to resolve a conflict. We demonstrate our approach through case studies on feature interactions in autonomous drones.

Membership inference attacks (MIA) can reveal whether a particular data point was part of the training dataset, potentially exposing sensitive information about individuals. This article explores the fundamental statistical limitations associated with MIAs on machine learning models. More precisely, we first derive the statistical quantity that governs the effectiveness and success of such attacks. Then, we investigate several situations for which we provide bounds on this quantity of interest. This allows us to infer the accuracy of potential attacks as a function of the number of samples and other structural parameters of learning models, which in some cases can be directly estimated from the dataset.

Making causal inferences from observational studies can be challenging when confounders are missing not at random. In such cases, identifying causal effects is often not guaranteed. Motivated by a real example, we consider a treatment-independent missingness assumption under which we establish the identification of causal effects when confounders are missing not at random. We propose a weighted estimating equation (WEE) approach for estimating model parameters and introduce three estimators for the average causal effect, based on regression, propensity score weighting, and doubly robust estimation. We evaluate the performance of these estimators through simulations, and provide a real data analysis to illustrate our proposed method.

Robustness in machine learning is commonly studied in the adversarial setting, yet real-world noise (such as measurement noise) is random rather than adversarial. Model behavior under such noise is captured by average-case robustness, i.e., the probability of obtaining consistent predictions in a local region around an input. However, the na\"ive approach to computing average-case robustness based on Monte-Carlo sampling is statistically inefficient, especially for high-dimensional data, leading to prohibitive computational costs for large-scale applications. In this work, we develop the first analytical estimators to efficiently compute average-case robustness of multi-class discriminative models. These estimators linearize models in the local region around an input and analytically compute the robustness of the resulting linear models. We show empirically that these estimators efficiently compute the robustness of standard deep learning models and demonstrate these estimators' usefulness for various tasks involving robustness, such as measuring robustness bias and identifying dataset samples that are vulnerable to noise perturbation. In doing so, this work not only proposes a new framework for robustness, but also makes its computation practical, enabling the use of average-case robustness in downstream applications.

This study enhances option pricing by presenting unique pricing model fractional order Black-Scholes-Merton (FOBSM) which is based on the Black-Scholes-Merton (BSM) model. The main goal is to improve the precision and authenticity of option pricing, matching them more closely with the financial landscape. The approach integrates the strengths of both the BSM and neural network (NN) with complex diffusion dynamics. This study emphasizes the need to take fractional derivatives into account when analyzing financial market dynamics. Since FOBSM captures memory characteristics in sequential data, it is better at simulating real-world systems than integer-order models. Findings reveals that in complex diffusion dynamics, this hybridization approach in option pricing improves the accuracy of price predictions. the key contribution of this work lies in the development of a novel option pricing model (FOBSM) that leverages fractional calculus and neural networks to enhance accuracy in capturing complex diffusion dynamics and memory effects in financial data.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

The rapid recent progress in machine learning (ML) has raised a number of scientific questions that challenge the longstanding dogma of the field. One of the most important riddles is the good empirical generalization of overparameterized models. Overparameterized models are excessively complex with respect to the size of the training dataset, which results in them perfectly fitting (i.e., interpolating) the training data, which is usually noisy. Such interpolation of noisy data is traditionally associated with detrimental overfitting, and yet a wide range of interpolating models -- from simple linear models to deep neural networks -- have recently been observed to generalize extremely well on fresh test data. Indeed, the recently discovered double descent phenomenon has revealed that highly overparameterized models often improve over the best underparameterized model in test performance. Understanding learning in this overparameterized regime requires new theory and foundational empirical studies, even for the simplest case of the linear model. The underpinnings of this understanding have been laid in very recent analyses of overparameterized linear regression and related statistical learning tasks, which resulted in precise analytic characterizations of double descent. This paper provides a succinct overview of this emerging theory of overparameterized ML (henceforth abbreviated as TOPML) that explains these recent findings through a statistical signal processing perspective. We emphasize the unique aspects that define the TOPML research area as a subfield of modern ML theory and outline interesting open questions that remain.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司