In this paper, sparsification techniques aided online prediction algorithms in a reproducing kernel Hilbert space are studied for nonstationary time series. The online prediction algorithms as usual consist of the selection of kernel structure parameters and the kernel weight vector updating. For structure parameters, the kernel dictionary is selected by some sparsification techniques with online selective modeling criteria, and moreover the kernel covariance matrix is intermittently optimized in the light of the covariance matrix adaptation evolution strategy (CMA-ES). Optimizing the real symmetric covariance matrix can not only improve the kernel structure's flexibility by the cross relatedness of the input variables, but also partly alleviate the prediction uncertainty caused by the kernel dictionary selection for nonstationary time series. In order to sufficiently capture the underlying dynamic characteristics in prediction-error time series, a generalized optimization strategy is designed to construct the kernel dictionary sequentially in multiple kernel connection modes. The generalized optimization strategy provides a more self-contained way to construct the entire kernel connections, which enhances the ability to adaptively track the changing dynamic characteristics. Numerical simulations have demonstrated that the proposed approach has superior prediction performance for nonstationary time series.
Given a fixed finite metric space $(V,\mu)$, the {\em minimum $0$-extension problem}, denoted as ${\tt 0\mbox{-}Ext}[\mu]$, is equivalent to the following optimization problem: minimize function of the form $\min\limits_{x\in V^n} \sum_i f_i(x_i) + \sum_{ij}c_{ij}\mu(x_i,x_j)$ where $c_{ij},c_{vi}$ are given nonnegative costs and $f_i:V\rightarrow \mathbb R$ are functions given by $f_i(x_i)=\sum_{v\in V}c_{vi}\mu(x_i,v)$. The computational complexity of ${\tt 0\mbox{-}Ext}[\mu]$ has been recently established by Karzanov and by Hirai: if metric $\mu$ is {\em orientable modular} then ${\tt 0\mbox{-}Ext}[\mu]$ can be solved in polynomial time, otherwise ${\tt 0\mbox{-}Ext}[\mu]$ is NP-hard. To prove the tractability part, Hirai developed a theory of discrete convex functions on orientable modular graphs generalizing several known classes of functions in discrete convex analysis, such as $L^\natural$-convex functions. We consider a more general version of the problem in which unary functions $f_i(x_i)$ can additionally have terms of the form $c_{uv;i}\mu(x_i,\{u,v\})$ for $\{u,v\}\in F$, where set $F\subseteq\binom{V}{2}$ is fixed. We extend the complexity classification above by providing an explicit condition on $(\mu,F)$ for the problem to be tractable. In order to prove the tractability part, we generalize Hirai's theory and define a larger class of discrete convex functions. It covers, in particular, another well-known class of functions, namely submodular functions on an integer lattice. Finally, we improve the complexity of Hirai's algorithm for solving ${\tt 0\mbox{-}Ext}[\mu]$ on orientable modular graphs.
Given a graph $G=(V,E)$ and an integer $k$, the Minimum Membership Dominating Set (MMDS) problem seeks to find a dominating set $S \subseteq V$ of $G$ such that for each $v \in V$, $|N[v] \cap S|$ is at most $k$. We investigate the parameterized complexity of the problem and obtain the following results about MMDS: W[1]-hardness of the problem parameterized by the pathwidth (and thus, treewidth) of the input graph. W[1]-hardness parameterized by $k$ on split graphs. An algorithm running in time $2^{\mathcal{O}(\textbf{vc})} |V|^{\mathcal{O}(1)}$, where $\textbf{vc}$ is the size of a minimum-sized vertex cover of the input graph. An ETH-based lower bound showing that the algorithm mentioned in the previous item is optimal.
We introduce and analyze Generalized Time Domain Velocity Vector (GTVV), an extension of the previously presented acoustic multipath footprint extracted from the Ambisonic recordings. GTVV is better adapted to adverse acoustic conditions, and enables efficient parameter estimation of multiple plane wave components in the recorded multichannel mixture. Experiments on simulated data confirm the predicted theoretical advantages of these new spatio-temporal features.
This paper presents several strategies to tune the parameters of metaheuristic methods for (discrete) design optimization of reinforced concrete (RC) structures. A novel utility metric is proposed, based on the area under the average performance curve. The process of modelling, analysis and design of realistic RC structures leads to objective functions for which the evaluation is computationally very expensive. To avoid costly simulations, two types of surrogate models are used. The first one consists of the creation of a database containing all possible solutions. The second one uses benchmark functions to create a discrete sub-space of them, simulating the main features of realistic problems. Parameter tuning of four metaheuristics is performed based on two strategies. The main difference between them is the parameter control established to perform partial assessments. The simplest strategy is suitable to tune good `generalist' methods, i.e., methods with good performance regardless the parameter configuration. The other one is more expensive, but is well suited to assess any method. Tuning results prove that Biogeography-Based Optimization, a relatively new evolutionary algorithm, outperforms other methods such as GA or PSO for such optimization problems, due to its particular approach of applying recombination and mutation operators.
Offline reinforcement learning requires reconciling two conflicting aims: learning a policy that improves over the behavior policy that collected the dataset, while at the same time minimizing the deviation from the behavior policy so as to avoid errors due to distributional shift. This trade-off is critical, because most current offline reinforcement learning methods need to query the value of unseen actions during training to improve the policy, and therefore need to either constrain these actions to be in-distribution, or else regularize their values. We propose an offline RL method that never needs to evaluate actions outside of the dataset, but still enables the learned policy to improve substantially over the best behavior in the data through generalization. The main insight in our work is that, instead of evaluating unseen actions from the latest policy, we can approximate the policy improvement step implicitly by treating the state value function as a random variable, with randomness determined by the action (while still integrating over the dynamics to avoid excessive optimism), and then taking a state conditional upper expectile of this random variable to estimate the value of the best actions in that state. This leverages the generalization capacity of the function approximator to estimate the value of the best available action at a given state without ever directly querying a Q-function with this unseen action. Our algorithm alternates between fitting this upper expectile value function and backing it up into a Q-function. Then, we extract the policy via advantage-weighted behavioral cloning. We dub our method implicit Q-learning (IQL). IQL demonstrates the state-of-the-art performance on D4RL, a standard benchmark for offline reinforcement learning. We also demonstrate that IQL achieves strong performance fine-tuning using online interaction after offline initialization.
Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.
Learning low-dimensional representations for entities and relations in knowledge graphs using contrastive estimation represents a scalable and effective method for inferring connectivity patterns. A crucial aspect of contrastive learning approaches is the choice of corruption distribution that generates hard negative samples, which force the embedding model to learn discriminative representations and find critical characteristics of observed data. While earlier methods either employ too simple corruption distributions, i.e. uniform, yielding easy uninformative negatives or sophisticated adversarial distributions with challenging optimization schemes, they do not explicitly incorporate known graph structure resulting in suboptimal negatives. In this paper, we propose Structure Aware Negative Sampling (SANS), an inexpensive negative sampling strategy that utilizes the rich graph structure by selecting negative samples from a node's k-hop neighborhood. Empirically, we demonstrate that SANS finds high-quality negatives that are highly competitive with SOTA methods, and requires no additional parameters nor difficult adversarial optimization.
Knowledge graph embedding aims to learn distributed representations for entities and relations, and is proven to be effective in many applications. Crossover interactions --- bi-directional effects between entities and relations --- help select related information when predicting a new triple, but haven't been formally discussed before. In this paper, we propose CrossE, a novel knowledge graph embedding which explicitly simulates crossover interactions. It not only learns one general embedding for each entity and relation as most previous methods do, but also generates multiple triple specific embeddings for both of them, named interaction embeddings. We evaluate embeddings on typical link prediction tasks and find that CrossE achieves state-of-the-art results on complex and more challenging datasets. Furthermore, we evaluate embeddings from a new perspective --- giving explanations for predicted triples, which is important for real applications. In this work, an explanation for a triple is regarded as a reliable closed-path between the head and the tail entity. Compared to other baselines, we show experimentally that CrossE, benefiting from interaction embeddings, is more capable of generating reliable explanations to support its predictions.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
This paper presents a safety-aware learning framework that employs an adaptive model learning method together with barrier certificates for systems with possibly nonstationary agent dynamics. To extract the dynamic structure of the model, we use a sparse optimization technique, and the resulting model will be used in combination with control barrier certificates which constrain feedback controllers only when safety is about to be violated. Under some mild assumptions, solutions to the constrained feedback-controller optimization are guaranteed to be globally optimal, and the monotonic improvement of a feedback controller is thus ensured. In addition, we reformulate the (action-)value function approximation to make any kernel-based nonlinear function estimation method applicable. We then employ a state-of-the-art kernel adaptive filtering technique for the (action-)value function approximation. The resulting framework is verified experimentally on a brushbot, whose dynamics is unknown and highly complex.