亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a reconfigurable intelligent sensing surface (RISS) that combines passive and active elements to achieve simultaneous reflection and direction of arrival (DOA) estimation tasks. By utilizing DOA information from the RISS instead of conventional channel estimation, the pilot overhead is reduced and the RISS becomes independent of the hybrid access point (HAP), enabling efficient operation. Specifically, the RISS autonomously estimates the DOA of uplink signals from single-antenna users and reflects them using the HAP's slowly varying DOA information. During downlink transmission, it updates the HAP's DOA information and designs the reflection phase of energy signals based on the latest user DOA information. The paper includes a comprehensive performance analysis, covering system design, protocol details, receiving performance, and RISS deployment suggestions. We derive a closed-form expression to analyze system performance under DOA errors, and calculate the statistical distribution of user received energy using the moment-matching technique. We provide a recommended transmit power to meet a specified outage probability and energy threshold. Numerical results demonstrate that the proposed system outperforms the conventional counterpart by 2.3 dB and 4.7 dB for Rician factors $\kappa_h=\kappa_G=1$ and $\kappa_h=\kappa_G=10$, respectively.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

Entity resolution (ER) is an important data integration task with a wide spectrum of applications. The state-of-the-art solutions on ER rely on pre-trained language models (PLMs), which require fine-tuning on a lot of labeled matching/non-matching entity pairs. Recently, large languages models (LLMs), such as GPT-4, have shown the ability to perform many tasks without tuning model parameters, which is known as in-context learning (ICL) that facilitates effective learning from a few labeled input context demonstrations. However, existing ICL approaches to ER typically necessitate providing a task description and a set of demonstrations for each entity pair and thus have limitations on the monetary cost of interfacing LLMs. To address the problem, in this paper, we provide a comprehensive study to investigate how to develop a cost-effective batch prompting approach to ER. We introduce a framework BATCHER consisting of demonstration selection and question batching and explore different design choices that support batch prompting for ER. We also devise a covering-based demonstration selection strategy that achieves an effective balance between matching accuracy and monetary cost. We conduct a thorough evaluation to explore the design space and evaluate our proposed strategies. Through extensive experiments, we find that batch prompting is very cost-effective for ER, compared with not only PLM-based methods fine-tuned with extensive labeled data but also LLM-based methods with manually designed prompting. We also provide guidance for selecting appropriate design choices for batch prompting.

This paper presents a program analysis method that generates program summaries involving polynomial arithmetic. Our approach builds on prior techniques that use solvable polynomial maps for summarizing loops. These techniques are able to generate all polynomial invariants for a restricted class of programs, but cannot be applied to programs outside of this class -- for instance, programs with nested loops, conditional branching, unstructured control flow, etc. There currently lacks approaches to apply these prior methods to the case of general programs. This paper bridges that gap. Instead of restricting the kinds of programs we can handle, our method abstracts every loop into a model that can be solved with prior techniques, bringing to bear prior work on solvable polynomial maps to general programs. While no method can generate all polynomial invariants for arbitrary programs, our method establishes its merit through a monotonicty result. We have implemented our techniques, and tested them on a suite of benchmarks from the literature. Our experiments indicate our techniques show promise on challenging verification tasks requiring non-linear reasoning.

The Image Captioning (IC) technique is widely used to describe images in natural language. Recently, some IC system testing methods have been proposed. However, these methods still rely on pre-annotated information and hence cannot really alleviate the oracle problem in testing. Besides, their method artificially manipulates objects, which may generate unreal images as test cases and thus lead to less meaningful testing results. Thirdly, existing methods have various requirements on the eligibility of source test cases, and hence cannot fully utilize the given images to perform testing. To tackle these issues, in this paper, we propose REIC to perform metamorphic testing for IC systems with some image-level reduction transformations like image cropping and stretching. Instead of relying on the pre-annotated information, REIC uses a localization method to align objects in the caption with corresponding objects in the image, and checks whether each object is correctly described or deleted in the caption after transformation. With the image-level reduction transformations, REIC does not artificially manipulate any objects and hence can avoid generating unreal follow-up images. Besides, it eliminates the requirement on the eligibility of source test cases in the metamorphic transformation process, as well as decreases the ambiguity and boosts the diversity among the follow-up test cases, which consequently enables testing to be performed on any test image and reveals more distinct valid violations. We employ REIC to test five popular IC systems. The results demonstrate that REIC can sufficiently leverage the provided test images to generate follow-up cases of good reality, and effectively detect a great number of distinct violations, without the need for any pre-annotated information.

This manuscript enriches the framework of continuous normalizing flows (CNFs) within causal inference, primarily to augment the geometric properties of parametric submodels used in targeted maximum likelihood estimation (TMLE). By introducing an innovative application of CNFs, we construct a refined series of parametric submodels that enable a directed interpolation between the prior distribution $p_0$ and the empirical distribution $p_1$. This proposed methodology serves to optimize the semiparametric efficiency bound in causal inference by orchestrating CNFs to align with Wasserstein gradient flows. Our approach not only endeavors to minimize the mean squared error in the estimation but also imbues the estimators with geometric sophistication, thereby enhancing robustness against misspecification. This robustness is crucial, as it alleviates the dependence on the standard $n^{\frac{1}{4}}$ rate for a doubly-robust perturbation direction in TMLE. By incorporating robust optimization principles and differential geometry into the estimators, the developed geometry-aware CNFs represent a significant advancement in the pursuit of doubly robust causal inference.

This paper presents an effective method of identifying elephant rumbles in infrasonic seismic signals. The design and implementation of electronic circuitry to amplify, filter, and digitize the seismic signals captured through geophones are presented. A collection of seismic infrasonic elephant rumbles was collected at a free-ranging area of an elephant orphanage in Sri Lanka. The seismic rumbles were converted to spectrograms, and several methods were used for spectral feature extraction. Using LasyPredict, the features extracted using different methods were fed into their corresponding machine-learning algorithms to train them for automatic seismic rumble identification. It was found that the Mel frequency cepstral coefficient (MFCC) together with the Ridge classifier machine learning algorithm produced the best performance in identifying seismic elephant rumbles. A novel method for denoising the spectrum that leads to enhanced accuracy in identifying seismic rumbles is also presented.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司