In the standard use case of Algorithmic Fairness, the goal is to eliminate the relationship between a sensitive variable and a corresponding score. Throughout recent years, the scientific community has developed a host of definitions and tools to solve this task, which work well in many practical applications. However, the applicability and effectivity of these tools and definitions becomes less straightfoward in the case of multiple sensitive attributes. To tackle this issue, we propose a sequential framework, which allows to progressively achieve fairness across a set of sensitive features. We accomplish this by leveraging multi-marginal Wasserstein barycenters, which extends the standard notion of Strong Demographic Parity to the case with multiple sensitive characteristics. This method also provides a closed-form solution for the optimal, sequentially fair predictor, permitting a clear interpretation of inter-sensitive feature correlations. Our approach seamlessly extends to approximate fairness, enveloping a framework accommodating the trade-off between risk and unfairness. This extension permits a targeted prioritization of fairness improvements for a specific attribute within a set of sensitive attributes, allowing for a case specific adaptation. A data-driven estimation procedure for the derived solution is developed, and comprehensive numerical experiments are conducted on both synthetic and real datasets. Our empirical findings decisively underscore the practical efficacy of our post-processing approach in fostering fair decision-making.
Data contamination in language model evaluation is increasingly prevalent as the popularity of large language models. It allows models to "cheat" via memorisation instead of displaying true capabilities. Therefore, contamination analysis has became an crucial part of reliable model evaluation to validate results. However, existing contamination analysis is usually conducted internally by LLM developers and often lacks transparency and completeness. This paper present an open source data contamination reports for the Llama series models. We analyse six popular multi-choice QA benchmarks and quantify their overlapping with the training set of Llama. Various levels of contamination ranging from 1\% to 8.7\% are found across benchmarks. Our comparison also reveals that Llama models can gain over 5\% higher accuracy on contaminated subsets versus clean subsets. Data and code are available at: //github.com/liyucheng09/Contamination_Detector.
Sparse high-dimensional functions have arisen as a rich framework to study the behavior of gradient-descent methods using shallow neural networks, showcasing their ability to perform feature learning beyond linear models. Amongst those functions, the simplest are single-index models $f(x) = \phi( x \cdot \theta^*)$, where the labels are generated by an arbitrary non-linear scalar link function $\phi$ applied to an unknown one-dimensional projection $\theta^*$ of the input data. By focusing on Gaussian data, several recent works have built a remarkable picture, where the so-called information exponent (related to the regularity of the link function) controls the required sample complexity. In essence, these tools exploit the stability and spherical symmetry of Gaussian distributions. In this work, building from the framework of \cite{arous2020online}, we explore extensions of this picture beyond the Gaussian setting, where both stability or symmetry might be violated. Focusing on the planted setting where $\phi$ is known, our main results establish that Stochastic Gradient Descent can efficiently recover the unknown direction $\theta^*$ in the high-dimensional regime, under assumptions that extend previous works \cite{yehudai2020learning,wu2022learning}.
Object Based Audio (OBA) provides a new kind of audio experience, delivered to the audience to personalize and customize their experience of listening and to give them choice of what and how to hear their audio content. OBA can be applied to different platforms such as broadcasting, streaming and cinema sound. This paper presents a novel approach for creating object-based audio on the production side. The approach here presents Sample-by-Sample Object Based Audio (SSOBA) embedding. SSOBA places audio object samples in such a way that allows audiences to easily individualize their chosen audio sources according to their interests and needs. SSOBA is an extra service and not an alternative, so it is also compliant with legacy audio players. The biggest advantage of SSOBA is that it does not require any special additional hardware in the broadcasting chain and it is therefore easy to implement and equip legacy players and decoders with enhanced ability. Input audio objects, number of output channels and sampling rates are three important factors affecting SSOBA performance and specifying it to be lossless or lossy. SSOBA adopts interpolation at the decoder side to compensate for eliminated samples. Both subjective and objective experiments are carried out to evaluate the output results at each step. MUSHRA subjective experiments conducted after the encoding step shows good-quality performance of SSOBA with up to five objects. SNR measurements and objective experiments, performed after decoding and interpolation, show significant successful recovery and separation of audio objects. Experimental results show that a minimum sampling rate of 96 kHz is indicated to encode up to five objects in a Stereo-mode channel to acquire good subjective and objective results simultaneously.
The assumption of conditional independence among observed variables, primarily used in the Variational Autoencoder (VAE) decoder modeling, has limitations when dealing with high-dimensional datasets or complex correlation structures among observed variables. To address this issue, we introduced the Cramer-Wold distance regularization, which can be computed in a closed-form, to facilitate joint distributional learning for high-dimensional datasets. Additionally, we introduced a two-step learning method to enable flexible prior modeling and improve the alignment between the aggregated posterior and the prior distribution. Furthermore, we provide theoretical distinctions from existing methods within this category. To evaluate the synthetic data generation performance of our proposed approach, we conducted experiments on high-dimensional datasets with multiple categorical variables. Given that many readily available datasets and data science applications involve such datasets, our experiments demonstrate the effectiveness of our proposed methodology.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.