亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Human respiration rate (HRR) is an important physiological metric for diagnosing a variety of health conditions from stress levels to heart conditions. Estimation of HRR is well-studied in controlled terrestrial environments, yet robotic estimation of HRR as an indicator of diver stress in underwater for underwater human robot interaction (UHRI) scenarios is to our knowledge unexplored. We introduce a novel system for robotic estimation of HRR from underwater visual data by utilizing bubbles from exhalation cycles in scuba diving to time respiration rate. We introduce a fuzzy labeling system that utilizes audio information to label a diverse dataset of diver breathing data on which we compare four different methods for characterizing the presence of bubbles in images. Ultimately we show that our method is effective at estimating HRR by comparing the respiration rate output with human analysts.

相關內容

Developing artificial intelligence (AI) tools for healthcare is a collaborative effort, bringing data scientists, clinicians, patients and other disciplines together. In this paper, we explore the collaborative data practices of research consortia tasked with applying AI tools to understand and manage multiple long-term conditions in the UK. Through an inductive thematic analysis of 13 semi-structured interviews with participants of these consortia, we aimed to understand how collaboration happens based on the tools used, communication processes and settings, as well as the conditions and obstacles for collaborative work. Our findings reveal the adaptation of tools that are used for sharing knowledge and the tailoring of information based on the audience, particularly those from a clinical or patient perspective. Limitations on the ability to do this were also found to be imposed by the use of electronic healthcare records and access to datasets. We identified meetings as the key setting for facilitating exchanges between disciplines and allowing for the blending and creation of knowledge. Finally, we bring to light the conditions needed to facilitate collaboration and discuss how some of the challenges may be navigated in future work.

Analyzing age-specific mortality, fertility, and migration in subpopulations is a crucial task in demography, with significant policy relevance. In practice, such analysis is challenging when studying numerous subpopulations, due to small sample sizes and demographic heterogeneity. To address this issue, a Bayesian model for the joint analysis of many, potentially small, demographic subgroups is proposed. The model combines three common assumptions about demographic processes in a unified probabilistic framework. The approach provides robust estimates of the demographic process in each subpopulation, allows testing for heterogeneity between subpopulations, and can be used to assess the impact of covariates on the demographic process. This makes the model suitable for probabilistic projection exercises and scenario analysis. An in-depth analysis of age-specific immigration flows to Austria, disaggregated by sex and 155 countries of origin, is used to illustrate the framework. Comparative analysis shows that the model outperforms commonly used benchmark frameworks in both in-sample imputation and out-of-sample prediction exercises.

ChatGPT explores a strategic blueprint of question answering (QA) in delivering medical diagnosis, treatment recommendations, and other healthcare support. This is achieved through the increasing incorporation of medical domain data via natural language processing (NLP) and multimodal paradigms. By transitioning the distribution of text, images, videos, and other modalities from the general domain to the medical domain, these techniques have expedited the progress of medical domain question answering (MDQA). They bridge the gap between human natural language and sophisticated medical domain knowledge or expert manual annotations, handling large-scale, diverse, unbalanced, or even unlabeled data analysis scenarios in medical contexts. Central to our focus is the utilizing of language models and multimodal paradigms for medical question answering, aiming to guide the research community in selecting appropriate mechanisms for their specific medical research requirements. Specialized tasks such as unimodal-related question answering, reading comprehension, reasoning, diagnosis, relation extraction, probability modeling, and others, as well as multimodal-related tasks like vision question answering, image caption, cross-modal retrieval, report summarization, and generation, are discussed in detail. Each section delves into the intricate specifics of the respective method under consideration. This paper highlights the structures and advancements of medical domain explorations against general domain methods, emphasizing their applications across different tasks and datasets. It also outlines current challenges and opportunities for future medical domain research, paving the way for continued innovation and application in this rapidly evolving field.

Estimating the individual treatment effect (ITE) from observational data is a crucial research topic that holds significant value across multiple domains. How to identify hidden confounders poses a key challenge in ITE estimation. Recent studies have incorporated the structural information of social networks to tackle this challenge, achieving notable advancements. However, these methods utilize graph neural networks to learn the representation of hidden confounders in Euclidean space, disregarding two critical issues: (1) the social networks often exhibit a scalefree structure, while Euclidean embeddings suffer from high distortion when used to embed such graphs, and (2) each ego-centric network within a social network manifests a treatment-related characteristic, implying significant patterns of hidden confounders. To address these issues, we propose a novel method called Treatment-Aware Hyperbolic Representation Learning (TAHyper). Firstly, TAHyper employs the hyperbolic space to encode the social networks, thereby effectively reducing the distortion of confounder representation caused by Euclidean embeddings. Secondly, we design a treatment-aware relationship identification module that enhances the representation of hidden confounders by identifying whether an individual and her neighbors receive the same treatment. Extensive experiments on two benchmark datasets are conducted to demonstrate the superiority of our method.

Purpose: Lymph nodes (LNs) in the chest have a tendency to enlarge due to various pathologies, such as lung cancer or pneumonia. Clinicians routinely measure nodal size to monitor disease progression, confirm metastatic cancer, and assess treatment response. However, variations in their shapes and appearances make it cumbersome to identify LNs, which reside outside of most organs. Methods: We propose to segment LNs in the mediastinum by leveraging the anatomical priors of 28 different structures (e.g., lung, trachea etc.) generated by the public TotalSegmentator tool. The CT volumes from 89 patients available in the public NIH CT Lymph Node dataset were used to train three 3D nnUNet models to segment LNs. The public St. Olavs dataset containing 15 patients (out-of-training-distribution) was used to evaluate the segmentation performance. Results: For the 15 test patients, the 3D cascade nnUNet model obtained the highest Dice score of 72.2 +- 22.3 for mediastinal LNs with short axis diameter $\geq$ 8mm and 54.8 +- 23.8 for all LNs respectively. These results represent an improvement of 10 points over a current approach that was evaluated on the same test dataset. Conclusion: To our knowledge, we are the first to harness 28 distinct anatomical priors to segment mediastinal LNs, and our work can be extended to other nodal zones in the body. The proposed method has immense potential for improved patient outcomes through the identification of enlarged nodes in initial staging CT scans.

Internet of Things (IoT) and smart wearable devices for personalized healthcare will require storing and computing ever-increasing amounts of data. The key requirements for these devices are ultra-low-power, high-processing capabilities, autonomy at low cost, as well as reliability and accuracy to enable Green AI at the edge. Artificial Intelligence (AI) models, especially Bayesian Neural Networks (BayNNs) are resource-intensive and face challenges with traditional computing architectures due to the memory wall problem. Computing-in-Memory (CIM) with emerging resistive memories offers a solution by combining memory blocks and computing units for higher efficiency and lower power consumption. However, implementing BayNNs on CIM hardware, particularly with spintronic technologies, presents technical challenges due to variability and manufacturing defects. The NeuSPIN project aims to address these challenges through full-stack hardware and software co-design, developing novel algorithmic and circuit design approaches to enhance the performance, energy-efficiency and robustness of BayNNs on sprintronic-based CIM platforms.

Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.

The recent advancements in artificial intelligence (AI) combined with the extensive amount of data generated by today's clinical systems, has led to the development of imaging AI solutions across the whole value chain of medical imaging, including image reconstruction, medical image segmentation, image-based diagnosis and treatment planning. Notwithstanding the successes and future potential of AI in medical imaging, many stakeholders are concerned of the potential risks and ethical implications of imaging AI solutions, which are perceived as complex, opaque, and difficult to comprehend, utilise, and trust in critical clinical applications. Despite these concerns and risks, there are currently no concrete guidelines and best practices for guiding future AI developments in medical imaging towards increased trust, safety and adoption. To bridge this gap, this paper introduces a careful selection of guiding principles drawn from the accumulated experiences, consensus, and best practices from five large European projects on AI in Health Imaging. These guiding principles are named FUTURE-AI and its building blocks consist of (i) Fairness, (ii) Universality, (iii) Traceability, (iv) Usability, (v) Robustness and (vi) Explainability. In a step-by-step approach, these guidelines are further translated into a framework of concrete recommendations for specifying, developing, evaluating, and deploying technically, clinically and ethically trustworthy AI solutions into clinical practice.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

北京阿比特科技有限公司