亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Entity resolution, a longstanding problem of data cleaning and integration, aims at identifying data records that represent the same real-world entity. Existing approaches treat entity resolution as a universal task, assuming the existence of a single interpretation of a real-world entity and focusing only on finding matched records, separating corresponding from non-corresponding ones, with respect to this single interpretation. However, in real-world scenarios, where entity resolution is part of a more general data project, downstream applications may have varying interpretations of real-world entities relating, for example, to various user needs. In what follows, we introduce the problem of multiple intents entity resolution (MIER), an extension to the universal (single intent) entity resolution task. As a solution, we propose FlexER, utilizing contemporary solutions to universal entity resolution tasks to solve multiple intents entity resolution. FlexER addresses the problem as a multi-label classification problem. It combines intent-based representations of tuple pairs using a multiplex graph representation that serves as an input to a graph neural network (GNN). FlexER learns intent representations and improves the outcome to multiple resolution problems. A large-scale empirical evaluation introduces a new benchmark and, using also two well-known benchmarks, shows that FlexER effectively solves the MIER problem and outperforms the state-of-the-art for a universal entity resolution.

相關內容

不同的數據提供方對同一個事物即實體 (Entity)可能會有不同的描述 (這 里的描述包括數據格式 、表示方法 等) ,每一個對實體的描述稱為該實體的一個引用。實體解析,是指從一個“ 引用集合”中解析并映射到現實世界中的“ 實體”過程 。實體解析(Entity Resolution)又被稱為記錄鏈接(Record Linkage) 、對象識別(object Identification ) 、個體識別(Individual Identification) 、重復檢測(Duplicate Detection)

In this paper, we tackle the problem of selecting the optimal model for a given structured pattern classification dataset. In this context, a model can be understood as a classifier and a hyperparameter configuration. The proposed meta-learning approach purely relies on machine learning and involves four major steps. Firstly, we present a concise collection of 62 meta-features that address the problem of information cancellation when aggregation measure values involving positive and negative measurements. Secondly, we describe two different approaches for synthetic data generation intending to enlarge the training data. Thirdly, we fit a set of pre-defined classification models for each classification problem while optimizing their hyperparameters using grid search. The goal is to create a meta-dataset such that each row denotes a multilabel instance describing a specific problem. The features of these meta-instances denote the statistical properties of the generated datasets, while the labels encode the grid search results as binary vectors such that best-performing models are positively labeled. Finally, we tackle the model selection problem with several multilabel classifiers, including a Convolutional Neural Network designed to handle tabular data. The simulation results show that our meta-learning approach can correctly predict an optimal model for 91% of the synthetic datasets and for 87% of the real-world datasets. Furthermore, we noticed that most meta-classifiers produced better results when using our meta-features. Overall, our proposal differs from other meta-learning approaches since it tackles the algorithm selection and hyperparameter tuning problems in a single step. Toward the end, we perform a feature importance analysis to determine which statistical features drive the model selection mechanism.

We propose a novel approach to compute high-resolution (2048x1024 and higher) depths for panoramas that is significantly faster and qualitatively and qualitatively more accurate than the current state-of-the-art method (360MonoDepth). As traditional neural network-based methods have limitations in the output image sizes (up to 1024x512) due to GPU memory constraints, both 360MonoDepth and our method rely on stitching multiple perspective disparity or depth images to come out a unified panoramic depth map. However, to achieve globally consistent stitching, 360MonoDepth relied on solving extensive disparity map alignment and Poisson-based blending problems, leading to high computation time. Instead, we propose to use an existing panoramic depth map (computed in real-time by any panorama-based method) as the common target for the individual perspective depth maps to register to. This key idea made producing globally consistent stitching results from a straightforward task. Our experiments show that our method generates qualitatively better results than existing panorama-based methods, and further outperforms them quantitatively on datasets unseen by these methods.

Dimension reduction and data visualization aim to project a high-dimensional dataset to a low-dimensional space while capturing the intrinsic structures in the data. It is an indispensable part of modern data science, and many dimensional reduction and visualization algorithms have been developed. However, different algorithms have their own strengths and weaknesses, making it critically important to evaluate their relative performance for a given dataset, and to leverage and combine their individual strengths. In this paper, we propose an efficient spectral method for assessing and combining multiple visualizations of a given dataset produced by diverse algorithms. The proposed method provides a quantitative measure -- the visualization eigenscore -- of the relative performance of the visualizations for preserving the structure around each data point. Then it leverages the eigenscores to obtain a consensus visualization, which has much improved { quality over the individual visualizations in capturing the underlying true data structure.} Our approach is flexible and works as a wrapper around any visualizations. We analyze multiple simulated and real-world datasets from diverse applications to demonstrate the effectiveness of the eigenscores for evaluating visualizations and the superiority of the proposed consensus visualization. Furthermore, we establish rigorous theoretical justification of our method based on a general statistical framework, yielding fundamental principles behind the empirical success of consensus visualization along with practical guidance.

Finding multiple solutions of non-convex optimization problems is a ubiquitous yet challenging task. Most past algorithms either apply single-solution optimization methods from multiple random initial guesses or search in the vicinity of found solutions using ad hoc heuristics. We present an end-to-end method to learn the proximal operator of a family of training problems so that multiple local minima can be quickly obtained from initial guesses by iterating the learned operator, emulating the proximal-point algorithm that has fast convergence. The learned proximal operator can be further generalized to recover multiple optima for unseen problems at test time, enabling applications such as object detection. The key ingredient in our formulation is a proximal regularization term, which elevates the convexity of our training loss: by applying recent theoretical results, we show that for weakly-convex objectives with Lipschitz gradients, training of the proximal operator converges globally with a practical degree of over-parameterization. We further present an exhaustive benchmark for multi-solution optimization to demonstrate the effectiveness of our method.

In this paper, we introduce a novel implicit neural network for the task of single image super-resolution at arbitrary scale factors. To do this, we represent an image as a decoding function that maps locations in the image along with their associated features to their reciprocal pixel attributes. Since the pixel locations are continuous in this representation, our method can refer to any location in an image of varying resolution. To retrieve an image of a particular resolution, we apply a decoding function to a grid of locations each of which refers to the center of a pixel in the output image. In contrast to other techniques, our dual interactive neural network decouples content and positional features. As a result, we obtain a fully implicit representation of the image that solves the super-resolution problem at (real-valued) elective scales using a single model. We demonstrate the efficacy and flexibility of our approach against the state of the art on publicly available benchmark datasets.

Discovering new intents is of great significance to establishing Bootstrapped Task-Oriented Dialogue System. Most existing methods either lack the ability to transfer prior knowledge in the known intent data or fall into the dilemma of forgetting prior knowledge in the follow-up. More importantly, these methods do not deeply explore the intrinsic structure of unlabeled data, so they can not seek out the characteristics that make an intent in general. In this paper, starting from the intuition that discovering intents could be beneficial to the identification of the known intents, we propose a probabilistic framework for discovering intents where intent assignments are treated as latent variables. We adopt Expectation Maximization framework for optimization. Specifically, In E-step, we conduct discovering intents and explore the intrinsic structure of unlabeled data by the posterior of intent assignments. In M-step, we alleviate the forgetting of prior knowledge transferred from known intents by optimizing the discrimination of labeled data. Extensive experiments conducted in three challenging real-world datasets demonstrate our method can achieve substantial improvements.

As the interest to Graph Neural Networks (GNNs) is growing, the importance of benchmarking and performance characterization studies of GNNs is increasing. So far, we have seen many studies that investigate and present the performance and computational efficiency of GNNs. However, the work done so far has been carried out using a few high-level GNN frameworks. Although these frameworks provide ease of use, they contain too many dependencies to other existing libraries. The layers of implementation details and the dependencies complicate the performance analysis of GNN models that are built on top of these frameworks, especially while using architectural simulators. Furthermore, different approaches on GNN computation are generally overlooked in prior characterization studies, and merely one of the common computational models is evaluated. Based on these shortcomings and needs that we observed, we developed a benchmark suite that is framework independent, supporting versatile computational models, easily configurable and can be used with architectural simulators without additional effort. Our benchmark suite, which we call gSuite, makes use of only hardware vendor's libraries and therefore it is independent of any other frameworks. gSuite enables performing detailed performance characterization studies on GNN Inference using both contemporary GPU profilers and architectural GPU simulators. To illustrate the benefits of our new benchmark suite, we perform a detailed characterization study with a set of well-known GNN models with various datasets; running gSuite both on a real GPU card and a timing-detailed GPU simulator. We also implicate the effect of computational models on performance. We use several evaluation metrics to rigorously measure the performance of GNN computation.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

北京阿比特科技有限公司