亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Within the field of hierarchical modelling, little attention is paid to micro-macro models: those in which group-level outcomes are dependent on covariates measured at the level of individuals within groups. Although such models are perhaps underrepresented in the literature, they have applications in economics, epidemiology, and the social sciences. Despite the strong mathematical similarities between micro-macro and measurement error models, few efforts have been made to apply the much better-developed methodology of the latter to the former. Here, we present a new empirical Bayesian technique for micro-macro data, called FRODO (Functional Regression On Densities of Observations). The method jointly infers group-specific densities for multilevel covariates and uses them as functional predictors in a functional linear regression, resulting in a model that is analogous to a generalized additive model (GAM). In doing so, it achieves a level of generality comparable to more sophisticated methods developed for errors-in-variables models, while further leveraging the larger group sizes characteristic of multilevel data to provide richer information about the within-group covariate distributions. After explaining the hierarchical structure of FRODO, its power and versatility are demonstrated on several simulated datasets, showcasing its ability to accommodate a wide variety of covariate distributions and regression models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 分離的 · Analysis · 原點 · 劃分 ·
2024 年 12 月 17 日

This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with $L^{\infty}$-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of $O(e^{-cn^{1/d}})$ for MS-GFEM for all these problems, improving upon the $O(e^{-cn^{1/(d+1)}})$ rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an $O(|\log\epsilon|^{d})$-term separable approximation on well-separated domains with error $\epsilon>0$. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an $O(|\log\epsilon|^{d+1})$-term separable approximation was proved for Poisson-type problems.

We design and investigate a variety of multigrid solvers for high-order local discontinuous Galerkin methods applied to elliptic interface and multiphase Stokes problems. Using the template of a standard multigrid V-cycle, we consider a variety of element-wise block smoothers, including Jacobi, multi-coloured Gauss-Seidel, processor-block Gauss-Seidel, and with special interest, smoothers based on sparse approximate inverse (SAI) methods. In particular, we develop SAI methods that: (i) balance the smoothing of velocity and pressure variables in Stokes problems; and (ii) robustly handles high-contrast viscosity coefficients in multiphase problems. Across a broad range of two- and three-dimensional test cases, including Poisson, elliptic interface, steady-state Stokes, and unsteady Stokes problems, we examine a multitude of multigrid smoother and solver combinations. In every case, there is at least one approach that matches the performance of classical geometric multigrid algorithms, e.g., 4 to 8 iterations to reduce the residual by 10 orders of magnitude. We also discuss their relative merits with regard to simplicity, robustness, computational cost, and parallelisation.

Most of the scientific literature on causal modeling considers the structural framework of Pearl and the potential-outcome framework of Rubin to be formally equivalent, and therefore interchangeably uses do-interventions and the potential-outcome subscript notation to write counterfactual outcomes. In this paper, we agnostically superimpose the two causal models to specify under which mathematical conditions structural counterfactual outcomes and potential outcomes need to, do not need to, can, or cannot be equal (almost surely or law). Our comparison reminds that a structural causal model and a Rubin causal model compatible with the same observations do not have to coincide, and highlights real-world problems where they even cannot correspond. Then, we examine common claims and practices from the causal-inference literature in the light of these results. In doing so, we aim at clarifying the relationship between the two causal frameworks, and the interpretation of their respective counterfactuals.

A new variant of the GMRES method is presented for solving linear systems with the same matrix and subsequently obtained multiple right-hand sides. The new method keeps such properties of the classical GMRES algorithm as follows. Both bases of the search space and its image are maintained orthonormal that increases the robustness of the method. Moreover there is no need to store both bases since they are effectively represented within a common basis. Along with it our method is theoretically equivalent to the GCR method extended for a case of multiple right-hand sides but is more numerically robust and requires less memory. The main result of the paper is a mechanism of adding an arbitrary direction vector to the search space that can be easily adopted for flexible GMRES or GMRES with deflated restarting.

This study presents a novel representation learning model tailored for dynamic networks, which describes the continuously evolving relationships among individuals within a population. The problem is encapsulated in the dimension reduction topic of functional data analysis. With dynamic networks represented as matrix-valued functions, our objective is to map this functional data into a set of vector-valued functions in a lower-dimensional learning space. This space, defined as a metric functional space, allows for the calculation of norms and inner products. By constructing this learning space, we address (i) attribute learning, (ii) community detection, and (iii) link prediction and recovery of individual nodes in the dynamic network. Our model also accommodates asymmetric low-dimensional representations, enabling the separate study of nodes' regulatory and receiving roles. Crucially, the learning method accounts for the time-dependency of networks, ensuring that representations are continuous over time. The functional learning space we define naturally spans the time frame of the dynamic networks, facilitating both the inference of network links at specific time points and the reconstruction of the entire network structure without direct observation. We validated our approach through simulation studies and real-world applications. In simulations, we compared our methods link prediction performance to existing approaches under various data corruption scenarios. For real-world applications, we examined a dynamic social network replicated across six ant populations, demonstrating that our low-dimensional learning space effectively captures interactions, roles of individual ants, and the social evolution of the network. Our findings align with existing knowledge of ant colony behavior.

Eye movements provide a window into human behaviour, attention, and interaction dynamics. Challenges in real-world, multi-person environments have, however, restrained eye-tracking research predominantly to single-person, in-lab settings. We developed a system to stream, record, and analyse synchronised data from multiple mobile eye-tracking devices during collective viewing experiences (e.g., concerts, films, lectures). We implemented lightweight operator interfaces for real-time-monitoring, remote-troubleshooting, and gaze-projection from individual egocentric perspectives to a common coordinate space for shared gaze analysis. We tested the system in a live concert and a film screening with 30 simultaneous viewers during each of two public events (N=60). We observe precise time-synchronisation between devices measured through recorded clock-offsets, and accurate gaze-projection in challenging dynamic scenes. Our novel analysis metrics and visualizations illustrate the potential of collective eye-tracking data for understanding collaborative behaviour and social interaction. This advancement promotes ecological validity in eye-tracking research and paves the way for innovative interactive tools.

In current multimodal tasks, models typically freeze the encoder and decoder while adapting intermediate layers to task-specific goals, such as region captioning. Region-level visual understanding presents significant challenges for large-scale vision-language models. While limited spatial awareness is a known issue, coarse-grained pretraining, in particular, exacerbates the difficulty of optimizing latent representations for effective encoder-decoder alignment. We propose AlignCap, a framework designed to enhance region-level understanding through fine-grained alignment of latent spaces. Our approach introduces a novel latent feature refinement module that enhances conditioned latent space representations to improve region-level captioning performance. We also propose an innovative alignment strategy, the semantic space alignment module, which boosts the quality of multimodal representations. Additionally, we incorporate contrastive learning in a novel manner within both modules to further enhance region-level captioning performance. To address spatial limitations, we employ a General Object Detection (GOD) method as a data preprocessing pipeline that enhances spatial reasoning at the regional level. Extensive experiments demonstrate that our approach significantly improves region-level captioning performance across various tasks

The multi-modal perception methods are thriving in the autonomous driving field due to their better usage of complementary data from different sensors. Such methods depend on calibration and synchronization between sensors to get accurate environmental information. There have already been studies about space-alignment robustness in autonomous driving object detection process, however, the research for time-alignment is relatively few. As in reality experiments, LiDAR point clouds are more challenging for real-time data transfer, our study used historical frames of LiDAR to better align features when the LiDAR data lags exist. We designed a Timealign module to predict and combine LiDAR features with observation to tackle such time misalignment based on SOTA GraphBEV framework.

Next-generation reservoir computing (NG-RC) has attracted much attention due to its excellent performance in spatio-temporal forecasting of complex systems and its ease of implementation. This paper shows that NG-RC can be encoded as a kernel ridge regression that makes training efficient and feasible even when the space of chosen polynomial features is very large. Additionally, an extension to an infinite number of covariates is possible, which makes the methodology agnostic with respect to the lags into the past that are considered as explanatory factors, as well as with respect to the number of polynomial covariates, an important hyperparameter in traditional NG-RC. We show that this approach has solid theoretical backing and good behavior based on kernel universality properties previously established in the literature. Various numerical illustrations show that these generalizations of NG-RC outperform the traditional approach in several forecasting applications.

Approximating field variables and data vectors from sparse samples is a key challenge in computational science. Widely used methods such as gappy proper orthogonal decomposition and empirical interpolation rely on linear approximation spaces, limiting their effectiveness for data representing transport-dominated and wave-like dynamics. To address this limitation, we introduce quadratic manifold sparse regression, which trains quadratic manifolds with a sparse greedy method and computes approximations on the manifold through novel nonlinear projections of sparse samples. The nonlinear approximations obtained with quadratic manifold sparse regression achieve orders of magnitude higher accuracies than linear methods on data describing transport-dominated dynamics in numerical experiments.

北京阿比特科技有限公司