亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper describes the short-term competition on Components Segmentation Task of Document Photos that was prepared in the context of the 16th International Conference on Document Analysis and Recognition (ICDAR 2021). This competition aims to bring together researchers working on the filed of identification document image processing and provides them a suitable benchmark to compare their techniques on the component segmentation task of document images. Three challenge tasks were proposed entailing different segmentation assignments to be performed on a provided dataset. The collected data are from several types of Brazilian ID documents, whose personal information was conveniently replaced. There were 16 participants whose results obtained for some or all the three tasks show different rates for the adopted metrics, like Dice Similarity Coefficient ranging from 0.06 to 0.99. Different Deep Learning models were applied by the entrants with diverse strategies to achieve the best results in each of the tasks. Obtained results show that the current applied methods for solving one of the proposed tasks (document boundary detection) are already well stablished. However, for the other two challenge tasks (text zone and handwritten sign detection) research and development of more robust approaches are still required to achieve acceptable results.

相關內容

ICDAR是一個非常成功的旗艦會議系列,是文獻分析界研究人員、科學家和實踐者的最大和最重要的國際會議。該會議得到了IAPR-TC 10/11的認可,成立于近30年前。第15屆文件分析與識別國際會議(ICDAR 2019)由澳大利亞悉尼科技大學(UTS)主辦,并在悉尼國際會議中心(ICC)舉行。接受的論文由會議出版服務(CPS)出版,并提交給IEEE Xplore數字圖書館。官網鏈接: · 回合 · · 均值 · 傳感器 ·
2021 年 8 月 17 日

LiDARs and cameras are the two main sensors that are planned to be included in many announced autonomous vehicles prototypes. Each of the two provides a unique form of data from a different perspective to the surrounding environment. In this paper, we explore and attempt to answer the question: is there an added benefit by fusing those two forms of data for the purpose of semantic segmentation within the context of autonomous driving? We also attempt to show at which level does said fusion prove to be the most useful. We evaluated our algorithms on the publicly available SemanticKITTI dataset. All fusion models show improvements over the base model, with the mid-level fusion showing the highest improvement of 2.7% in terms of mean Intersection over Union (mIoU) metric.

We present a task and benchmark dataset for person-centric visual grounding, the problem of linking between people named in a caption and people pictured in an image. In contrast to prior work in visual grounding, which is predominantly object-based, our new task masks out the names of people in captions in order to encourage methods trained on such image-caption pairs to focus on contextual cues (such as rich interactions between multiple people), rather than learning associations between names and appearances. To facilitate this task, we introduce a new dataset, Who's Waldo, mined automatically from image-caption data on Wikimedia Commons. We propose a Transformer-based method that outperforms several strong baselines on this task, and are releasing our data to the research community to spur work on contextual models that consider both vision and language.

Handwritten character recognition (HCR) is a challenging learning problem in pattern recognition, mainly due to similarity in structure of characters, different handwriting styles, noisy datasets and a large variety of languages and scripts. HCR problem is studied extensively for a few decades but there is very limited research on script independent models. This is because of factors, like, diversity of scripts, focus of the most of conventional research efforts on handcrafted feature extraction techniques which are language/script specific and are not always available, and unavailability of public datasets and codes to reproduce the results. On the other hand, deep learning has witnessed huge success in different areas of pattern recognition, including HCR, and provides end-to-end learning, i.e., automated feature extraction and recognition. In this paper, we have proposed a novel deep learning architecture which exploits transfer learning and image-augmentation for end-to-end learning for script independent handwritten character recognition, called HCR-Net. The network is based on a novel transfer learning approach for HCR, where some of lower layers of a pre-trained VGG16 network are utilised. Due to transfer learning and image-augmentation, HCR-Net provides faster training, better performance and better generalisations. The experimental results on publicly available datasets of Bangla, Punjabi, Hindi, English, Swedish, Urdu, Farsi, Tibetan, Kannada, Malayalam, Telugu, Marathi, Nepali and Arabic languages prove the efficacy of HCR-Net and establishes several new benchmarks. For reproducibility of the results and for the advancements of the HCR research, complete code is publicly released at \href{//github.com/jmdvinodjmd/HCR-Net}{GitHub}.

This paper presents and characterizes MIND, a new Portuguese corpus comprised of different types of articles collected from online mainstream and alternative media sources, over a 10-month period. The articles in the corpus are organized into five collections: facts, opinions, entertainment, satires, and conspiracy theories. Throughout this paper, we explain how the data collection process was conducted, and present a set of linguistic metrics that allow us to perform a preliminary characterization of the texts included in the corpus. Also, we deliver an analysis of the most frequent topics in the corpus, and discuss the main differences and similarities among the collections considered. Finally, we enumerate some tasks and applications that could benefit from this corpus, in particular the ones (in)directly related to misinformation detection. Overall, our contribution of a corpus and initial analysis are designed to support future exploratory news studies, and provide a better insight into misinformation.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

Although considerable attention has been given to neural ranking architectures recently, far less attention has been paid to the term representations that are used as input to these models. In this work, we investigate how two pretrained contextualized language models (ELMo and BERT) can be utilized for ad-hoc document ranking. Through experiments on TREC benchmarks, we find that several existing neural ranking architectures can benefit from the additional context provided by contextualized language models. Furthermore, we propose a joint approach that incorporates BERT's classification vector into existing neural models and show that it outperforms state-of-the-art ad-hoc ranking baselines. We call this joint approach CEDR (Contextualized Embeddings for Document Ranking). We also address practical challenges in using these models for ranking, including the maximum input length imposed by BERT and runtime performance impacts of contextualized language models.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

This paper reviews the development of Chinese word segmentation (CWS) in the most recent decade, 2007-2017. Special attention was paid to the deep learning technologies that has already permeated into most areas of natural language processing (NLP). The basic view we have arrived at is that compared to traditional supervised learning methods, neural network based methods have not shown any superior performance. The most critical challenge still lies on balancing of recognition of in-vocabulary (IV) and out-of-vocabulary (OOV) words. However, as neural models have potentials to capture the essential linguistic structure of natural language, we are optimistic about significant progresses may arrive in the near future.

In recent years, Fully Convolutional Networks (FCN) has been widely used in various semantic segmentation tasks, including multi-modal remote sensing imagery. How to fuse multi-modal data to improve the segmentation performance has always been a research hotspot. In this paper, a novel end-toend fully convolutional neural network is proposed for semantic segmentation of natural color, infrared imagery and Digital Surface Models (DSM). It is based on a modified DeepUNet and perform the segmentation in a multi-task way. The channels are clustered into groups and processed on different task pipelines. After a series of segmentation and fusion, their shared features and private features are successfully merged together. Experiment results show that the feature fusion network is efficient. And our approach achieves good performance in ISPRS Semantic Labeling Contest (2D).

北京阿比特科技有限公司