亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes an algorithm that uses geospatial analytics and the muting of physical resources in next-generation base stations (BSs) to avoid interference between cellular (or terrestrial) and satellite communication (non-terrestrial) systems. The information exchange between satellite and terrestrial stations is minimal, but a hybrid edge cloud node with access to estimated satellite trajectories can enable these BSs to take proactive steps to avoid interference. To validate the superiority of our proposed algorithm over a conventional method, we show the performance of the algorithm using two measures: number of concurrent uses of Doppler corrected radio frequency resources and the sum-rate capacity of the BSs. Our algorithm not only provides significant sum-rate capacity gains in both directions enabling better use of the spectrum, but also runs in polynomial time, making it suitable for real-time interference avoidance.

相關內容

The field of computational pathology has witnessed remarkable progress in the development of both task-specific predictive models and task-agnostic self-supervised vision encoders. However, despite the explosive growth of generative artificial intelligence (AI), there has been limited study on building general purpose, multimodal AI assistants tailored to pathology. Here we present PathChat, a vision-language generalist AI assistant for human pathology using an in-house developed foundational vision encoder pretrained on 100 million histology images from over 100,000 patient cases and 1.18 million pathology image-caption pairs. The vision encoder is then combined with a pretrained large language model and the whole system is finetuned on over 250,000 diverse disease agnostic visual language instructions. We compare PathChat against several multimodal vision language AI assistants as well as GPT4V, which powers the commercially available multimodal general purpose AI assistant ChatGPT-4. When relevant clinical context is provided with the histology image, PathChat achieved a diagnostic accuracy of 87% on multiple-choice questions based on publicly available cases of diverse tissue origins and disease models. Additionally, using open-ended questions and human expert evaluation, we found that overall PathChat produced more accurate and pathologist-preferable responses to diverse queries related to pathology. As an interactive and general vision language AI assistant that can flexibly handle both visual and natural language inputs, PathChat can potentially find impactful applications in pathology education, research, and human-in-the-loop clinical decision making.

While the pseudo-label method has demonstrated considerable success in semi-supervised object detection tasks, this paper uncovers notable limitations within this approach. Specifically, the pseudo-label method tends to amplify the inherent strengths of the detector while accentuating its weaknesses, which is manifested in the missed detection of pseudo-labels, particularly for small and tail category objects. To overcome these challenges, this paper proposes Mixed Pseudo Labels (MixPL), consisting of Mixup and Mosaic for pseudo-labeled data, to mitigate the negative impact of missed detections and balance the model's learning across different object scales. Additionally, the model's detection performance on tail categories is improved by resampling labeled data with relevant instances. Notably, MixPL consistently improves the performance of various detectors and obtains new state-of-the-art results with Faster R-CNN, FCOS, and DINO on COCO-Standard and COCO-Full benchmarks. Furthermore, MixPL also exhibits good scalability on large models, improving DINO Swin-L by 2.5% mAP and achieving nontrivial new records (60.2% mAP) on the COCO val2017 benchmark without extra annotations.

Ising machines have emerged as a promising solution for rapidly solving NP-complete combinatorial optimization problems, surpassing the capabilities of traditional computing methods. By efficiently determining the ground state of the Hamiltonian during the annealing process, Ising machines can effectively complement CPUs in tackling optimization challenges. To realize these Ising machines, a bi-stable oscillator is essential to emulate the atomic spins and interactions of the Ising model. This study introduces a Josephson parametric oscillator (JPO)-based tile structure, serving as a fundamental unit for scalable superconductor-based Ising machines. Leveraging the bi-stable nature of JPOs, which are superconductor-based oscillators, the proposed machine can operate at frequencies of 7.5GHz while consuming significantly less power (by three orders of magnitude) than CMOS-based systems. Furthermore, the compatibility of the proposed tile structure with the Lechner-Hauke-Zoller (LHZ) architecture ensures its viability for large-scale integration. We conducted simulations of the tile in a noisy environment to validate its functionality. We verified its operational characteristics by comparing the results with the analytical solution of its Hamiltonian model. This verification demonstrates the feasibility and effectiveness of the JPO-based tile in implementing Ising machines, opening new avenues for efficient and scalable combinatorial optimization in quantum computing.

This paper investigates the problem of online statistical inference of model parameters in stochastic optimization problems via the Kiefer-Wolfowitz algorithm with random search directions. We first present the asymptotic distribution for the Polyak-Ruppert-averaging type Kiefer-Wolfowitz (AKW) estimators, whose asymptotic covariance matrices depend on the distribution of search directions and the function-value query complexity. The distributional result reflects the trade-off between statistical efficiency and function query complexity. We further analyze the choice of random search directions to minimize certain summary statistics of the asymptotic covariance matrix. Based on the asymptotic distribution, we conduct online statistical inference by providing two construction procedures of valid confidence intervals.

This paper proposes the use of causal modeling to detect and mitigate algorithmic bias that is nonlinear in the protected attribute. We provide a general overview of our approach. We use the German Credit data set, which is available for download from the UC Irvine Machine Learning Repository, to develop (1) a prediction model, which is treated as a black box, and (2) a causal model for bias mitigation. In this paper, we focus on age bias and the problem of binary classification. We show that the probability of getting correctly classified as "low risk" is lowest among young people. The probability increases with age nonlinearly. To incorporate the nonlinearity into the causal model, we introduce a higher order polynomial term. Based on the fitted causal model, the de-biased probability estimates are computed, showing improved fairness with little impact on overall classification accuracy. Causal modeling is intuitive and, hence, its use can enhance explicability and promotes trust among different stakeholders of AI.

This paper investigates the feasibility of machine learning (ML)-based pilotless spatial multiplexing in multiple-input and multiple-output (MIMO) communication systems. Especially, it is shown that by training the transmitter and receiver jointly, the transmitter can learn such constellation shapes for the spatial streams which facilitate completely blind separation and detection by the simultaneously learned receiver. To the best of our knowledge, this is the first time ML-based spatial multiplexing without channel estimation pilots is demonstrated. The results show that the learned pilotless scheme can outperform a conventional pilot-based system by as much as 15-20% in terms of spectral efficiency, depending on the modulation order and signal-to-noise ratio.

This paper studies the joint community detection and phase synchronization problem on the \textit{stochastic block model with relative phase}, where each node is associated with an unknown phase angle. This problem, with a variety of real-world applications, aims to recover the cluster structure and associated phase angles simultaneously. We show this problem exhibits a \textit{``multi-frequency''} structure by closely examining its maximum likelihood estimation (MLE) formulation, whereas existing methods are not originated from this perspective. To this end, two simple yet efficient algorithms that leverage the MLE formulation and benefit from the information across multiple frequencies are proposed. The former is a spectral method based on the novel multi-frequency column-pivoted QR factorization. The factorization applied to the top eigenvectors of the observation matrix provides key information about the cluster structure and associated phase angles. The second approach is an iterative multi-frequency generalized power method, where each iteration updates the estimation in a matrix-multiplication-then-projection manner. Numerical experiments show that our proposed algorithms significantly improve the ability of exactly recovering the cluster structure and the accuracy of the estimated phase angles, compared to state-of-the-art algorithms.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司