亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The celebrated Bernstein von-Mises theorem ensures that credible regions from Bayesian posterior are well-calibrated when the model is correctly-specified, in the frequentist sense that their coverage probabilities tend to the nominal values as data accrue. However, this conventional Bayesian framework is known to lack robustness when the model is misspecified or only partly specified, such as in quantile regression, risk minimization based supervised/unsupervised learning and robust estimation. To overcome this difficulty, we propose a new Bayesian inferential approach that substitutes the (misspecified or partly specified) likelihoods with proper exponentially tilted empirical likelihoods plus a regularization term. Our surrogate empirical likelihood is carefully constructed by using the first order optimality condition of the empirical risk minimization as the moment condition. We show that the Bayesian posterior obtained by combining this surrogate empirical likelihood and the prior is asymptotically close to a normal distribution centering at the empirical risk minimizer with covariance matrix taking an appropriate sandwiched form. Consequently, the resulting Bayesian credible regions are automatically calibrated to deliver valid uncertainty quantification. Computationally, the proposed method can be easily implemented by Markov Chain Monte Carlo sampling algorithms. Our numerical results show that the proposed method tends to be more accurate than existing state-of-the-art competitors.

相關內容

Analytical understanding of how low-dimensional latent features reveal themselves in large-dimensional data is still lacking. We study this by defining a linear latent feature model with additive noise constructed from probabilistic matrices, and analytically and numerically computing the statistical distributions of pairwise correlations and eigenvalues of the correlation matrix. This allows us to resolve the latent feature structure across a wide range of data regimes set by the number of recorded variables, observations, latent features and the signal-to-noise ratio. We find a characteristic imprint of latent features in the distribution of correlations and eigenvalues and provide an analytic estimate for the boundary between signal and noise even in the absence of a clear spectral gap.

Diagnostic classification models (DCMs) offer statistical tools to inspect the fined-grained attribute of respondents' strengths and weaknesses. However, the diagnosis accuracy deteriorates when misspecification occurs in the predefined item-attribute relationship, which is encoded into a Q-matrix. To prevent such misspecification, methodologists have recently developed several Bayesian Q-matrix estimation methods for greater estimation flexibility. However, these methods become infeasible in the case of large-scale assessments with a large number of attributes and items. In this study, we focused on the deterministic inputs, noisy ``and'' gate (DINA) model and proposed a new framework for the Q-matrix estimation to find the Q-matrix with the maximum marginal likelihood. Based on this framework, we developed a scalable estimation algorithm for the DINA Q-matrix by constructing an iteration algorithm that utilizes stochastic optimization and variational inference. The simulation and empirical studies reveal that the proposed method achieves high-speed computation, good accuracy, and robustness to potential misspecifications, such as initial value's choices and hyperparameter settings. Thus, the proposed method can be a useful tool for estimating a Q-matrix in large-scale settings.

The delta method creates more general inference results when coupled with central limit theorem results for the finite population. This opens up a range of new estimators for which we can find finite population asymptotic properties. We focus on the use of this method to derive asymptotic distributional results and variance expressions for causal estimators. We illustrate the use of the method by obtaining a finite population asymptotic distribution for a causal ratio estimator.

In sparse large-scale testing problems where the false discovery proportion (FDP) is highly variable, the false discovery exceedance (FDX) provides a valuable alternative to the widely used false discovery rate (FDR). We develop an empirical Bayes approach to controlling the FDX. We show that for independent hypotheses from a two-group model and dependent hypotheses from a Gaussian model fulfilling the exchangeability condition, an oracle decision rule based on ranking and thresholding the local false discovery rate (lfdr) is optimal in the sense that the power is maximized subject to FDX constraint. We propose a data-driven FDX procedure that emulates the oracle via carefully designed computational shortcuts. We investigate the empirical performance of the proposed method using simulations and illustrate the merits of FDX control through an application for identifying abnormal stock trading strategies.

This paper presents a topological learning-theoretic perspective on causal inference by introducing a series of topologies defined on general spaces of structural causal models (SCMs). As an illustration of the framework we prove a topological causal hierarchy theorem, showing that substantive assumption-free causal inference is possible only in a meager set of SCMs. Thanks to a known correspondence between open sets in the weak topology and statistically verifiable hypotheses, our results show that inductive assumptions sufficient to license valid causal inferences are statistically unverifiable in principle. Similar to no-free-lunch theorems for statistical inference, the present results clarify the inevitability of substantial assumptions for causal inference. An additional benefit of our topological approach is that it easily accommodates SCMs with infinitely many variables. We finally suggest that the framework may be helpful for the positive project of exploring and assessing alternative causal-inductive assumptions.

It is difficult to use subsampling with variational inference in hierarchical models since the number of local latent variables scales with the dataset. Thus, inference in hierarchical models remains a challenge at large scale. It is helpful to use a variational family with structure matching the posterior, but optimization is still slow due to the huge number of local distributions. Instead, this paper suggests an amortized approach where shared parameters simultaneously represent all local distributions. This approach is similarly accurate as using a given joint distribution (e.g., a full-rank Gaussian) but is feasible on datasets that are several orders of magnitude larger. It is also dramatically faster than using a structured variational distribution.

Proximal causal inference was recently proposed as a framework to identify causal effects from observational data in the presence of hidden confounders for which proxies are available. In this paper, we extend the proximal causal approach to settings where identification of causal effects hinges upon a set of mediators which unfortunately are not directly observed, however proxies of the hidden mediators are measured. Specifically, we establish (i) a new hidden front-door criterion which extends the classical front-door result to allow for hidden mediators for which proxies are available; (ii) We extend causal mediation analysis to identify direct and indirect causal effects under unconfoundedness conditions in a setting where the mediator in view is hidden, but error prone proxies of the latter are available. We view (i) and (ii) as important steps towards the practical application of front-door criteria and mediation analysis as mediators are almost always error prone and thus, the most one can hope for in practice is that our measurements are at best proxies of mediating mechanisms. Finally, we show that identification of certain causal effects remains possible even in settings where challenges in (i) and (ii) might co-exist.

Influence maximization is the task of selecting a small number of seed nodes in a social network to maximize the spread of the influence from these seeds, and it has been widely investigated in the past two decades. In the canonical setting, the whole social network as well as its diffusion parameters is given as input. In this paper, we consider the more realistic sampling setting where the network is unknown and we only have a set of passively observed cascades that record the set of activated nodes at each diffusion step. We study the task of influence maximization from these cascade samples (IMS), and present constant approximation algorithms for this task under mild conditions on the seed set distribution. To achieve the optimization goal, we also provide a novel solution to the network inference problem, that is, learning diffusion parameters and the network structure from the cascade data. Comparing with prior solutions, our network inference algorithm requires weaker assumptions and does not rely on maximum-likelihood estimation and convex programming. Our IMS algorithms enhance the learning-and-then-optimization approach by allowing a constant approximation ratio even when the diffusion parameters are hard to learn, and we do not need any assumption related to the network structure or diffusion parameters.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

北京阿比特科技有限公司