In this work, we apply multi-goal oriented error estimation to the finite element method. In particular, we use the dual weighted residual method and apply it to a model problem. This model problem consist of locally different coercive partial differential equations in a checkerboard pattern, where the solution is continuous across the interface. In addition to the error estimation, the error can be localized using a partition of unity technique. The resulting adaptive algorithm is substantiated with a numerical example.
Error control by means of a posteriori error estimators or indica-tors and adaptive discretizations, such as adaptive mesh refinement, have emerged in the late seventies. Since then, numerous theoretical developments and improvements have been made, as well as the first attempts to introduce them into real-life industrial applications. The present introductory chapter provides an overview of the subject, highlights some of the achievements to date and discusses possible perspectives.
In this paper we discuss reduced order models for the approximation of parametric eigenvalue problems. In particular, we are interested in the presence of intersections or clusters of eigenvalues. The singularities originating by these phenomena make it hard a straightforward generalization of well known strategies normally used for standards PDEs. We investigate how the known results extend (or not) to higher order frequencies.
In this work we propose a discretization of the second boundary condition for the Monge-Ampere equation arising in geometric optics and optimal transport. The discretization we propose is the natural generalization of the popular Oliker-Prussner method proposed in 1988. For the discretization of the differential operator, we use a discrete analogue of the subdifferential. Existence, unicity and stability of the solutions to the discrete problem are established. Convergence results to the continuous problem are given.
In this paper, we present a stochastic method for the simulation of Laplace's equation with a mixed boundary condition in planar domains that are polygonal or bounded by circular arcs. We call this method the Reflected Walk-on-Spheres algorithm. The method combines a traditional Walk-on-Spheres algorithm with use of reflections at the Neumann boundaries. We apply our algorithm to simulate numerical conformal mappings from certain quadrilaterals to the corresponding canonical domains, and to compute their conformal moduli. Finally, we give examples of the method on three dimensional polyhedral domains, and use it to simulate the heat flow on an L-shaped insulated polyhedron.
In this paper we give local error estimates in Sobolev norms for the Galerkin method applied to strongly elliptic pseudodifferential equations on a polygon. By using the K-operator, an operator which averages the values of the Galerkin solution, we construct improved approximations.
Although Bayesian skew-normal models are useful for flexibly modeling spatio-temporal processes, they still have difficulty in computation cost and interpretability in their mean and variance parameters, including regression coefficients. To address these problems, this study proposes a spatio-temporal model that incorporates skewness while maintaining mean and variance, by applying the flexible subclass of the closed skew-normal distribution. An efficient sampling method is introduced, leveraging the autoregressive representation of the model. Additionally, the model's symmetry concerning spatial order is demonstrated, and Mardia's skewness and kurtosis are derived, showing independence from the mean and variance. Simulation studies compare the estimation performance of the proposed model with that of the Gaussian model. The result confirms its superiority in high skewness and low observation noise scenarios. The identification of Cobb-Douglas production functions across US states is examined as an application to real data, revealing that the proposed model excels in both goodness-of-fit and predictive performance.
In this work, we aim to develop energy-stable parametric finite element approximations for a sharp-interface model with strong surface energy anisotropy, which is derived from the first variation of an energy functional composed of film/vapor interfacial energy, substrate energy, and regularized Willmore energy. By introducing two geometric relations, we innovatively establish an equivalent regularized sharp-interface model and further construct an energy-stable parametric finite element algorithm for this equivalent model. We provide a detailed proof of the energy stability of the numerical scheme, addressing a gap in the relevant theory. Additionally, we develop another structure-preserving parametric finite element scheme that can preserve both area conservation and energy stability. Finally, we present several numerical simulations to show accuracy and efficiency as well as some structure-preserving properties of the proposed numerical methods. More importantly, extensive numerical simulations reveal that our schemes provide better mesh quality and are more suitable for long-term computations.
In this paper, we propose a new numerical strategy for the stabilization of evolution systems. The method is based on the methodology given by Ammari, Nicaise and Pignotti in "Stabilization by switching time-delay, Asymptot. Anal., 83 (2013), 263--283". This method is then implemented in 1D by suitable numerical approximation techniques. Numerical experiments complete this study to confirm the theoretical announced results.
In a previous publication, we introduced an abstract logic via an abstract notion of quantifier. Drawing upon concepts from categorical logic, this abstract logic interprets formulas from context as subobjects in a specific category, e.g., Cartesian, regular, or coherent categories, Grothendieck, or elementary toposes. We proposed an entailment system formulated as a sequent calculus which we proved complete. Building on this foundation, our current work explores model theory within abstract logic. More precisely, we generalize one of the most important and powerful classical model theory methods, namely the ultraproduct method, and show its fundamental theorem, i.e., Los's theorem. The result is shown as independently as possible of a given quantifier.
In this work, we use the monolithic convex limiting (MCL) methodology to enforce relevant inequality constraints in implicit finite element discretizations of the compressible Euler equations. In this context, preservation of invariant domains follows from positivity preservation for intermediate states of the density and internal energy. To avoid spurious oscillations, we additionally impose local maximum principles on intermediate states of the density, velocity components, and specific total energy. For the backward Euler time stepping, we show the invariant domain preserving (IDP) property of the fully discrete MCL scheme by constructing a fixed-point iteration that is IDP and converges under a strong time step restriction. Our iterative solver for the nonlinear discrete problem employs a more efficient fixed-point iteration. The matrix of the associated linear system is a robust low-order Jacobian approximation that exploits the homogeneity property of the flux function. The limited antidiffusive terms are treated explicitly. We use positivity preservation as a stopping criterion for nonlinear iterations. The first iteration yields the solution of a linearized semi-implicit problem. This solution possesses the discrete conservation property but is generally not IDP. Further iterations are performed if any non-IDP states are detected. The existence of an IDP limit is guaranteed by our analysis. To facilitate convergence to steady-state solutions, we perform adaptive explicit underrelaxation at the end of each time step. The calculation of appropriate relaxation factors is based on an approximate minimization of nodal entropy residuals. The performance of proposed algorithms and alternative solution strategies is illustrated by the convergence history for standard two-dimensional test problems.