The rapid evolution of Vehicular Ad-hoc NETworks (VANETs) has ushered in a transformative era for intelligent transportation systems (ITS), significantly enhancing road safety and vehicular communication. However, the intricate and dynamic nature of VANETs presents formidable challenges, particularly in vehicle-to-infrastructure (V2I) communications. Roadside Units (RSUs), integral components of VANETs, are increasingly susceptible to cyberattacks, such as jamming and distributed denial of service (DDoS) attacks. These vulnerabilities pose grave risks to road safety, potentially leading to traffic congestion and vehicle malfunctions. Existing methods face difficulties in detecting dynamic attacks and integrating digital twin technology and artificial intelligence (AI) models to enhance VANET cybersecurity. Our study proposes a novel framework that combines digital twin technology with AI to enhance the security of RSUs in VANETs and address this gap. This framework enables real-time monitoring and efficient threat detection while also improving computational efficiency and reducing data transmission delay for increased energy efficiency and hardware durability. Our framework outperforms existing solutions in resource management and attack detection. It reduces RSU load and data transmission delay while achieving an optimal balance between resource consumption and high attack detection effectiveness. This highlights our commitment to secure and sustainable vehicular communication systems for smart cities.
Meeting the strict Quality of Service (QoS) requirements of terminals has imposed a signiffcant challenge on Multiaccess Edge Computing (MEC) systems, due to the limited multidimensional resources. To address this challenge, we propose a collaborative MEC framework that facilitates resource sharing between the edge servers, and with the aim to maximize the long-term QoS and reduce the cache switching cost through joint optimization of service caching, collaborative offfoading, and computation and communication resource allocation. The dual timescale feature and temporal recurrence relationship between service caching and other resource allocation make solving the problem even more challenging. To solve it, we propose a deep reinforcement learning (DRL)-based dual timescale scheme, called DGL-DDPG, which is composed of a short-term genetic algorithm (GA) and a long short-term memory network-based deep deterministic policy gradient (LSTM-DDPG). In doing so, we reformulate the optimization problem as a Markov decision process (MDP) where the small-timescale resource allocation decisions generated by an improved GA are taken as the states and input into a centralized LSTM-DDPG agent to generate the service caching decision for the large-timescale. Simulation results demonstrate that our proposed algorithm outperforms the baseline algorithms in terms of the average QoS and cache switching cost.
In reconfigurable intelligent surface (RIS)-assisted symbiotic radio (SR), the RIS acts as a secondary transmitter by modulating its information bits over the incident primary signal and simultaneously assists the primary transmission, then a cooperative receiver is used to jointly decode the primary and secondary signals. Most existing works of SR focus on using RIS to enhance the reflecting link while ignoring the ambiguity problem for the joint detection caused by the multiplication relationship of the primary and secondary signals. Particularly, in case of a blocked direct link, joint detection will suffer from severe performance loss due to the ambiguity, when using the conventional on-off keying and binary phase shift keying modulation schemes for RIS. To address this issue, we propose a novel modulation scheme for RIS-assisted SR that divides the phase-shift matrix into two components: the symbol-invariant and symbol-varying components, which are used to assist the primary transmission and carry the secondary signal, respectively. To design these two components, we focus on the detection of the composite signal formed by the primary and secondary signals, through which a problem of minimizing the bit error rate (BER) of the composite signal is formulated to improve both the BER performance of the primary and secondary ones. By solving the problem, we derive the closed-form solution of the optimal symbol-invariant and symbol-varying components, which is related to the channel strength ratio of the direct link to the reflecting link. Moreover, theoretical BER performance is analyzed. Finally, simulation results show the superiority of the proposed modulation scheme over its conventional counterpart.
We present Prompt Cache, an approach for accelerating inference for large language models (LLM) by reusing attention states across different LLM prompts. Many input prompts have overlapping text segments, such as system messages, prompt templates, and documents provided for context. Our key insight is that by precomputing and storing the attention states of these frequently occurring text segments on the inference server, we can efficiently reuse them when these segments appear in user prompts. Prompt Cache employs a schema to explicitly define such reusable text segments, called prompt modules. The schema ensures positional accuracy during attention state reuse and provides users with an interface to access cached states in their prompt. Using a prototype implementation, we evaluate Prompt Cache across several LLMs. We show that Prompt Cache significantly reduce latency in time-to-first-token, especially for longer prompts such as document-based question answering and recommendations. The improvements range from 8x for GPU-based inference to 60x for CPU-based inference, all while maintaining output accuracy and without the need for model parameter modifications.
Retrieval-Augmented Generation (RAG) has shown significant improvements in various natural language processing tasks by integrating the strengths of large language models (LLMs) and external knowledge databases. However, RAG introduces long sequence generation and leads to high computation and memory costs. We propose RAGCache, a novel multilevel dynamic caching system tailored for RAG. Our analysis benchmarks current RAG systems, pinpointing the performance bottleneck (i.e., long sequence due to knowledge injection) and optimization opportunities (i.e., caching knowledge's intermediate states). Based on these insights, we design RAGCache, which organizes the intermediate states of retrieved knowledge in a knowledge tree and caches them in the GPU and host memory hierarchy. RAGCache proposes a replacement policy that is aware of LLM inference characteristics and RAG retrieval patterns. It also dynamically overlaps the retrieval and inference steps to minimize the end-to-end latency. We implement RAGCache and evaluate it on vLLM, a state-of-the-art LLM inference system and Faiss, a state-of-the-art vector database. The experimental results show that RAGCache reduces the time to first token (TTFT) by up to 4x and improves the throughput by up to 2.1x compared to vLLM integrated with Faiss.
Cooperative Adaptive Cruise Control (CACC) represents a quintessential control strategy for orchestrating vehicular platoon movement within Connected and Automated Vehicle (CAV) systems, significantly enhancing traffic efficiency and reducing energy consumption. In recent years, the data-driven methods, such as reinforcement learning (RL), have been employed to address this task due to their significant advantages in terms of efficiency and flexibility. However, the delay issue, which often arises in real-world CACC systems, is rarely taken into account by current RL-based approaches. To tackle this problem, we propose a Delay-Aware Multi-Agent Reinforcement Learning (DAMARL) framework aimed at achieving safe and stable control for CACC. We model the entire decision-making process using a Multi-Agent Delay-Aware Markov Decision Process (MADA-MDP) and develop a centralized training with decentralized execution (CTDE) MARL framework for distributed control of CACC platoons. An attention mechanism-integrated policy network is introduced to enhance the performance of CAV communication and decision-making. Additionally, a velocity optimization model-based action filter is incorporated to further ensure the stability of the platoon. Experimental results across various delay conditions and platoon sizes demonstrate that our approach consistently outperforms baseline methods in terms of platoon safety, stability and overall performance.
Neural Architecture Search (NAS) has emerged as a key tool in identifying optimal configurations of deep neural networks tailored to specific tasks. However, training and assessing numerous architectures introduces considerable computational overhead. One method to mitigating this is through performance predictors, which offer a means to estimate the potential of an architecture without exhaustive training. Given that neural architectures fundamentally resemble Directed Acyclic Graphs (DAGs), Graph Neural Networks (GNNs) become an apparent choice for such predictive tasks. Nevertheless, the scarcity of training data can impact the precision of GNN-based predictors. To address this, we introduce a novel GNN predictor for NAS. This predictor renders neural architectures into vector representations by combining both the conventional and inverse graph views. Additionally, we incorporate a customized training loss within the GNN predictor to ensure efficient utilization of both types of representations. We subsequently assessed our method through experiments on benchmark datasets including NAS-Bench-101, NAS-Bench-201, and the DARTS search space, with a training dataset ranging from 50 to 400 samples. Benchmarked against leading GNN predictors, the experimental results showcase a significant improvement in prediction accuracy, with a 3%--16% increase in Kendall-tau correlation. Source codes are available at //github.com/EMI-Group/fr-nas.
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.