亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a dynamic mechanism design problem where an auctioneer sells an indivisible good to two groups of buyers in every round, for a total of $T$ rounds. The auctioneer aims to maximize their discounted overall revenue while adhering to a fairness constraint that guarantees a minimum average allocation for each group. We begin by studying the static case ($T=1$) and establish that the optimal mechanism involves two types of subsidization: one that increases the overall probability of allocation to all buyers, and another that favors the group which otherwise has a lower probability of winning the item. We then extend our results to the dynamic case by characterizing a set of recursive functions that determine the optimal allocation and payments in each round. Notably, our results establish that in the dynamic case, the seller, on the one hand, commits to a participation reward to incentivize truth-telling, and on the other hand, charges an entry fee for every round. Moreover, the optimal allocation once more involves subsidization in favor of one group, where the extent of subsidization depends on the difference in future utilities for both the seller and buyers when allocating the item to one group versus the other. Finally, we present an approximation scheme to solve the recursive equations and determine an approximately optimal and fair allocation efficiently.

相關內容

A multitude of classifiers can be trained on the same data to achieve similar performances during test time, while having learned significantly different classification patterns. This phenomenon, which we call prediction discrepancies, is often associated with the blind selection of one model instead of another with similar performances. When making a choice, the machine learning practitioner has no understanding on the differences between models, their limits, where they agree and where they don't. But his/her choice will result in concrete consequences for instances to be classified in the discrepancy zone, since the final decision will be based on the selected classification pattern. Besides the arbitrary nature of the result, a bad choice could have further negative consequences such as loss of opportunity or lack of fairness. This paper proposes to address this question by analyzing the prediction discrepancies in a pool of best-performing models trained on the same data. A model-agnostic algorithm, DIG, is proposed to capture and explain discrepancies locally, to enable the practitioner to make the best educated decision when selecting a model by anticipating its potential undesired consequences. All the code to reproduce the experiments is available.

We introduce a conceptually simple and efficient algorithm for seamless parametrization, a key element in constructing quad layouts and texture charts on surfaces. More specifically, we consider the construction of parametrizations with prescribed holonomy signatures i.e., a set of angles at singularities, and rotations along homology loops, preserving which is essential for constructing parametrizations following an input field, as well as for user control of the parametrization structure. Our algorithm performs exceptionally well on a large dataset based on Thingi10k [Zhou and Jacobson 2016], (16156 meshes) as well as on a challenging smaller dataset of [Myles et al. 2014], converging, on average, in 9 iterations. Although the algorithm lacks a formal mathematical guarantee, presented empirical evidence and the connections between convex optimization and closely related algorithms, suggest that a similar formulation can be found for this algorithm in the future.

Test smells are coding issues that typically arise from inadequate practices, a lack of knowledge about effective testing, or deadline pressures to complete projects. The presence of test smells can negatively impact the maintainability and reliability of software. While there are tools that use advanced static analysis or machine learning techniques to detect test smells, these tools often require effort to be used. This study aims to evaluate the capability of Large Language Models (LLMs) in automatically detecting test smells. We evaluated ChatGPT-4, Mistral Large, and Gemini Advanced using 30 types of test smells across codebases in seven different programming languages collected from the literature. ChatGPT-4 identified 21 types of test smells. Gemini Advanced identified 17 types, while Mistral Large detected 15 types of test smells. Conclusion: The LLMs demonstrated potential as a valuable tool in identifying test smells.

We study a decision-maker's problem of finding optimal monetary incentive schemes for retention when faced with agents whose participation decisions (stochastically) depend on the incentive they receive. Our focus is on policies constrained to fulfill two fairness properties that preclude outcomes wherein different groups of agents experience different treatment on average. We formulate the problem as a high-dimensional stochastic optimization problem, and study it through the use of a closely related deterministic variant. We show that the optimal static solution to this deterministic variant is asymptotically optimal for the dynamic problem under fairness constraints. Though solving for the optimal static solution gives rise to a non-convex optimization problem, we uncover a structural property that allows us to design a tractable, fast-converging heuristic policy. Traditional schemes for retention ignore fairness constraints; indeed, the goal in these is to use differentiation to incentivize repeated engagement with the system. Our work (i) shows that even in the absence of explicit discrimination, dynamic policies may unintentionally discriminate between agents of different types by varying the type composition of the system, and (ii) presents an asymptotically optimal policy to avoid such discriminatory outcomes.

Data assimilation combines (imperfect) knowledge of a flow's physical laws with (noisy, time-lagged, and otherwise imperfect) observations to produce a more accurate prediction of flow statistics. Assimilation by nudging (from 1964), while non-optimal, is easy to implement and its analysis is clear and well-established. Nudging's uniform in time accuracy has even been established under conditions on the nudging parameter $\chi$ and the density of observational locations, $H$, Larios, Rebholz, and Zerfas \cite{larios2019global}. One remaining issue is that nudging requires the user to select a key parameter. The conditions required for this parameter, derived through $\acute{a}$ priori (worst case) analysis are severe (Section \ref{aprior-analysis} herein) and far beyond those found to be effective in computational experience. One resolution, developed herein, is self-adaptive parameter selection. This report develops, analyzes, tests, and compares two methods of self-adaptation of nudging parameters. One combines analysis and response to local flow behavior. The other is based only on response to flow behavior. The comparison finds both are easily implemented and yield effective values of the nudging parameter much smaller than those of $\acute{a}$ priori analysis.

Adversarial attacks on explainability models have drastic consequences when explanations are used to understand the reasoning of neural networks in safety critical systems. Path methods are one such class of attribution methods susceptible to adversarial attacks. Adversarial learning is typically phrased as a constrained optimisation problem. In this work, we propose algebraic adversarial examples and study the conditions under which one can generate adversarial examples for integrated gradients. Algebraic adversarial examples provide a mathematically tractable approach to adversarial examples.

The last success problem is an optimal stopping problem that aims to maximize the probability of stopping on the last success in a sequence of independent $n$ Bernoulli trials. In the classical setting where complete information about the distributions is available, Bruss~\cite{B00} provided an optimal stopping policy that ensures a winning probability of $1/e$. However, assuming complete knowledge of the distributions is unrealistic in many practical applications. This paper investigates a variant of the last success problem where samples from each distribution are available instead of complete knowledge of them. When a single sample from each distribution is allowed, we provide a deterministic policy that guarantees a winning probability of $1/4$. This is best possible by the upper bound provided by Nuti and Vondr\'{a}k~\cite{NV23}. Furthermore, for any positive constant $\epsilon$, we show that a constant number of samples from each distribution is sufficient to guarantee a winning probability of $1/e-\epsilon$.

We consider a general queueing model with price-sensitive customers in which the service provider seeks to balance two objectives, maximizing the average revenue rate and minimizing the average queue length. Customers arrive according to a Poisson process, observe an offered price, and decide to join the queue if their valuation exceeds the price. The queue is operated first-in first-out, and the service times are exponential. Our model represents applications in areas like make-to-order manufacturing, cloud computing, and food delivery. The optimal solution for our model is dynamic; the price changes as the state of the system changes. However, such dynamic pricing policies may be undesirable for a variety of reasons. In this work, we provide performance guarantees for a simple and natural class of static pricing policies which charge a fixed price up to a certain occupancy threshold and then allow no more customers into the system. We provide a series of results showing that such static policies can simultaneously guarantee a constant fraction of the optimal revenue with at most a constant factor increase in expected queue length. For instance, our policy for the M/M/1 setting allows bi-criteria approximations of $(0.5, 1), (0.66, 1.16), (0.75, 1.54)$ and $(0.8, 2)$ for the revenue and queue length, respectively. We also provide guarantees for settings with multiple customer classes and multiple servers, as well as the expected sojourn time objective.

A mechanism is described that addresses the fundamental trade off between media producers who want to increase reach and consumers who provide attention based on the rate of utility received, and where overreach negatively impacts that rate. An optimal solution can be achieved when the media source considers the impact of overreach in a cost function used in determining the optimal distribution of content to maximize individual consumer utility and participation. The result is a Nash equilibrium between producer and consumer that is also Pareto efficient. Comparison with the literature on Recommender systems highlights the advantages of the mechanism, including identifying an optimal content volume for the consumer and improvements for optimizing with multiple objectives. A practical algorithm for generating the optimal distribution for each consumer is provided.

We revisit the problem of designing scalable protocols for private statistics and private federated learning when each device holds its private data. Locally differentially private algorithms require little trust but are (provably) limited in their utility. Centrally differentially private algorithms can allow significantly better utility but require a trusted curator. This gap has led to significant interest in the design and implementation of simple cryptographic primitives, that can allow central-like utility guarantees without having to trust a central server. Our first contribution is to propose a new primitive that allows for efficient implementation of several commonly used algorithms, and allows for privacy accounting that is close to that in the central setting without requiring the strong trust assumptions it entails. {\em Shuffling} and {\em aggregation} primitives that have been proposed in earlier works enable this for some algorithms, but have significant limitations as primitives. We propose a {\em Samplable Anonymous Aggregation} primitive, which computes an aggregate over a random subset of the inputs and show that it leads to better privacy-utility trade-offs for various fundamental tasks. Secondly, we propose a system architecture that implements this primitive and perform a security analysis of the proposed system. Our design combines additive secret-sharing with anonymization and authentication infrastructures.

北京阿比特科技有限公司