亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning is an important privacy-preserving multi-party learning paradigm, involving collaborative learning with others and local updating on private data. Model heterogeneity and catastrophic forgetting are two crucial challenges, which greatly limit the applicability and generalizability. This paper presents a novel FCCL+, federated correlation and similarity learning with non-target distillation, facilitating the both intra-domain discriminability and inter-domain generalization. For heterogeneity issue, we leverage irrelevant unlabeled public data for communication between the heterogeneous participants. We construct cross-correlation matrix and align instance similarity distribution on both logits and feature levels, which effectively overcomes the communication barrier and improves the generalizable ability. For catastrophic forgetting in local updating stage, FCCL+ introduces Federated Non Target Distillation, which retains inter-domain knowledge while avoiding the optimization conflict issue, fulling distilling privileged inter-domain information through depicting posterior classes relation. Considering that there is no standard benchmark for evaluating existing heterogeneous federated learning under the same setting, we present a comprehensive benchmark with extensive representative methods under four domain shift scenarios, supporting both heterogeneous and homogeneous federated settings. Empirical results demonstrate the superiority of our method and the efficiency of modules on various scenarios.

相關內容

The emerging field of quantum machine learning has the potential of revolutionizing our perspectives of quantum computing and artificial intelligence. In the predominantly empirical realm of quantum machine learning, a theoretical void persists. This paper addresses the gap by highlighting the quantum cross entropy, a pivotal counterpart to the classical cross entropy. We establish quantum cross entropy's role in quantum data compression, a fundamental machine learning task, by demonstrating that it acts as the compression rate for sub-optimal quantum source coding. Our approach involves a novel, universal quantum data compression protocol based on the quantum generalization of variable-length coding and the principle of quantum strong typicality. This reveals that quantum cross entropy can effectively serve as a loss function in quantum machine learning algorithms. Furthermore, we illustrate that the minimum of quantum cross entropy aligns with the von Neumann entropy, reinforcing its role as the optimal compression rate and underscoring its significance in advancing our understanding of quantum machine learning's theoretical framework.

Sparse training has received an upsurging interest in machine learning due to its tantalizing saving potential for the entire training process as well as inference. Dynamic sparse training (DST), as a leading sparse training approach, can train deep neural networks at high sparsity from scratch to match the performance of their dense counterparts. However, most if not all DST prior arts demonstrate their effectiveness on unstructured sparsity with highly irregular sparse patterns, which receives limited support in common hardware. This limitation hinders the usage of DST in practice. In this paper, we propose Channel-aware dynamic sparse (Chase), which for the first time seamlessly translates the promise of unstructured dynamic sparsity to GPU-friendly channel-level sparsity (not fine-grained N:M or group sparsity) during one end-to-end training process, without any ad-hoc operations. The resulting small sparse networks can be directly accelerated by commodity hardware, without using any particularly sparsity-aware hardware accelerators. This appealing outcome is partially motivated by a hidden phenomenon of dynamic sparsity: off-the-shelf unstructured DST implicitly involves biased parameter reallocation across channels, with a large fraction of channels (up to 60%) being sparser than others. By progressively identifying and removing these channels during training, our approach translates unstructured sparsity to channel-wise sparsity. Our experimental results demonstrate that Chase achieves 1.7 X inference throughput speedup on common GPU devices without compromising accuracy with ResNet-50 on ImageNet. We release our codes in //github.com/luuyin/chase.

To facilitate efficient learning, policy gradient approaches to deep reinforcement learning (RL) are typically paired with variance reduction measures and strategies for making large but safe policy changes based on a batch of experiences. Natural policy gradient methods, including Trust Region Policy Optimization (TRPO), seek to produce monotonic improvement through bounded changes in policy outputs. Proximal Policy Optimization (PPO) is a commonly used, first-order algorithm that instead uses loss clipping to take multiple safe optimization steps per batch of data, replacing the bound on the single step of TRPO with regularization on multiple steps. In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective. Instead of the importance sampling objective of PPO, we instead recommend a basic policy gradient, clipped in an equivalent fashion. While both objectives produce biased gradient estimates with respect to the RL objective, they also both display significantly reduced variance compared to the unbiased off-policy policy gradient. Additionally, we show that (1) the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration. As a result, we empirically observe that COPG produces improved learning compared to PPO in single-task, constrained, and multi-task learning, without adding significant computational cost or complexity. Compared to TRPO, the COPG approach is seen to offer comparable or superior performance, while retaining the simplicity of a first-order method.

While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司