In applications such as end-to-end encrypted instant messaging, secure email, and device pairing, users need to compare key fingerprints to detect impersonation and adversary-in-the-middle attacks. Key fingerprints are usually computed as truncated hashes of each party's view of the channel keys, encoded as an alphanumeric or numeric string, and compared out-of-band, e.g. manually, to detect any inconsistencies. Previous work has extensively studied the usability of various verification strategies and encoding formats, however, the exact effect of key fingerprint length on the security and usability of key fingerprint verification has not been rigorously investigated. We present a 162-participant study on the effect of numeric key fingerprint length on comparison time and error rate. While the results confirm some widely-held intuitions such as general comparison times and errors increasing significantly with length, a closer look reveals interesting nuances. The significant rise in comparison time only occurs when highly similar fingerprints are compared, and comparison time remains relatively constant otherwise. On errors, our results clearly distinguish between security non-critical errors that remain low irrespective of length and security critical errors that significantly rise, especially at higher fingerprint lengths. A noteworthy implication of this latter result is that Signal/WhatsApp key fingerprints provide a considerably lower level of security than usually assumed.
Cyber-Physical Systems (CPSs), comprising both software and physical components, arise in many industry-relevant domains and are often mission- or safety-critical. System-Level Verification (SLV) of CPSs aims at certifying that given (e.g., safety or liveness) specifications are met, or at estimating the value of some KPIs, when the system runs in its operational environment, i.e., in presence of inputs (from users or other systems) and/or of additional, uncontrolled disturbances. To enable SLV of complex systems from the early design phases, the currently most adopted approach envisions the simulation of a system model under the (time bounded) operational scenarios of interest. Simulation-based SLV can be computationally prohibitive (years of sequential simulation), since model simulation is computationally intensive and the set of scenarios of interest can huge. We present a technique that, given a collection of scenarios of interest (extracted from mass-storage databases or from symbolic structures, e.g., constraint-based scenario generators), computes parallel shortest simulation campaigns, which drive a possibly large number of system model simulators running in parallel in a HPC infrastructure through all (and only) those scenarios in the user-defined (possibly random) order, by wisely avoiding multiple simulations of repeated trajectories, thus minimising the overall completion time, compatibly with the available simulator memory capacity. Our experiments on Modelica/FMU and Simulink case study models with up to ~200 million scenarios show that our optimisation yields speedups as high as 8x. This, together with the enabled massive parallelisation, makes practically viable (a few weeks in a HPC infrastructure) verification tasks (both statistical and exhaustive, with respect to the given set of scenarios) which would otherwise take inconceivably long time.
Motivated by the wide range of modern applications of the Erlang-B blocking model beyond communication networks and call centers to sizing and pricing in design production systems, messaging systems, and app-based parking systems, we study admission control for such a system but with unknown arrival and service rates. In our model, at every job arrival, a dispatcher decides to assign the job to an available server or block it. Every served job yields a fixed reward for the dispatcher, but it also results in a cost per unit time of service. Our goal is to design a dispatching policy that maximizes the long-term average reward for the dispatcher based on observing only the arrival times and the state of the system at each arrival that reflects a realistic sampling of such systems. Critically, the dispatcher observes neither the service times nor departure times so that standard reinforcement learning-based approaches that use reward signals do not apply. Hence, we develop our learning-based dispatch scheme as a parametric learning problem a'la self-tuning adaptive control. In our problem, certainty equivalent control switches between an always admit if room policy (explore infinitely often) and a never admit policy (immediately terminate learning), which is distinct from the adaptive control literature. Hence, our learning scheme judiciously uses the always admit if room policy so that learning doesn't stall. We prove that for all service rates, the proposed policy asymptotically learns to take the optimal action and present finite-time regret guarantees. The extreme contrast in the certainty equivalent optimal control policies leads to difficulties in learning that show up in our regret bounds for different parameter regimes: constant regret in one regime versus regret growing logarithmically in the other.
Counterfactual examples have emerged as an effective approach to produce simple and understandable post-hoc explanations. In the context of graph classification, previous work has focused on generating counterfactual explanations by manipulating the most elementary units of a graph, i.e., removing an existing edge, or adding a non-existing one. In this paper, we claim that such language of explanation might be too fine-grained, and turn our attention to some of the main characterizing features of real-world complex networks, such as the tendency to close triangles, the existence of recurring motifs, and the organization into dense modules. We thus define a general density-based counterfactual search framework to generate instance-level counterfactual explanations for graph classifiers, which can be instantiated with different notions of dense substructures. In particular, we show two specific instantiations of this general framework: a method that searches for counterfactual graphs by opening or closing triangles, and a method driven by maximal cliques. We also discuss how the general method can be instantiated to exploit any other notion of dense substructures, including, for instance, a given taxonomy of nodes. We evaluate the effectiveness of our approaches in 7 brain network datasets and compare the counterfactual statements generated according to several widely-used metrics. Results confirm that adopting a semantic-relevant unit of change like density is essential to define versatile and interpretable counterfactual explanation methods.
Fine-grained classification is a particular case of a classification problem, aiming to classify objects that share the visual appearance and can only be distinguished by subtle differences. Fine-grained classification models are often deployed to determine animal species or individuals in automated animal monitoring systems. Precise visual explanations of the model's decision are crucial to analyze systematic errors. Attention- or gradient-based methods are commonly used to identify regions in the image that contribute the most to the classification decision. These methods deliver either too coarse or too noisy explanations, unsuitable for identifying subtle visual differences reliably. However, perturbation-based methods can precisely identify pixels causally responsible for the classification result. Fill-in of the dropout (FIDO) algorithm is one of those methods. It utilizes the concrete dropout (CD) to sample a set of attribution masks and updates the sampling parameters based on the output of the classification model. A known problem of the algorithm is a high variance in the gradient estimates, which the authors have mitigated until now by mini-batch updates of the sampling parameters. This paper presents a solution to circumvent these computational instabilities by simplifying the CD sampling and reducing reliance on large mini-batch sizes. First, it allows estimating the parameters with smaller mini-batch sizes without losing the quality of the estimates but with a reduced computational effort. Furthermore, our solution produces finer and more coherent attribution masks. Finally, we use the resulting attribution masks to improve the classification performance of a trained model without additional fine-tuning of the model.
Many studies have proposed machine-learning (ML) models for malware detection and classification, reporting an almost-perfect performance. However, they assemble ground-truth in different ways, use diverse static- and dynamic-analysis techniques for feature extraction, and even differ on what they consider a malware family. As a consequence, our community still lacks an understanding of malware classification results: whether they are tied to the nature and distribution of the collected dataset, to what extent the number of families and samples in the training dataset influence performance, and how well static and dynamic features complement each other. This work sheds light on those open questions. by investigating the key factors influencing ML-based malware detection and classification. For this, we collect the largest balanced malware dataset so far with 67K samples from 670 families (100 samples each), and train state-of-the-art models for malware detection and family classification using our dataset. Our results reveal that static features perform better than dynamic features, and that combining both only provides marginal improvement over static features. We discover no correlation between packing and classification accuracy, and that missing behaviors in dynamically-extracted features highly penalize their performance. We also demonstrate how a larger number of families to classify make the classification harder, while a higher number of samples per family increases accuracy. Finally, we find that models trained on a uniform distribution of samples per family better generalize on unseen data.
An Electroencephalogram (EEG) is a non-invasive exam that records the electrical activity of the brain. This exam is used to help diagnose conditions such as different brain problems. EEG signals are taken for the purpose of epilepsy detection and with Discrete Wavelet Transform (DWT) and machine learning classifier, they perform epilepsy detection. In Epilepsy seizure detection, mainly machine learning classifiers and statistical features are used. The hidden information in the EEG signal is useful for detecting diseases affecting the brain. Sometimes it is very difficult to identify the minimum changes in the EEG in the time and frequency domains purpose. The DWT can give a good decomposition of the signals in different frequency bands and feature extraction. We use the tri-dimensionality reduction algorithm.; Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA). Finally, features are selected by using a fusion rule and at the last step three different classifiers Support Vector Machine (SVM), Naive Bayes (NB) and K-Nearest-Neighbor(KNN) have been used individually for the classification. The proposed framework is tested on the Bonn dataset and the simulation results provide the accuracy for the combination of LDA and SVM 89.17%, LDA and KNN 80.42%, PCA and NB 89.92%, PCA and SVM 85.58%, PCA and KNN 80.42%, ICA and NB 82.33%, ICA and SVM 90.42%, and ICA and KNN 90%, LDA and NB 100%, accuracy. It shows the sensitivity, specificity, accuracy, Precision, and Recall of 100%, 100%, 100%, 100%, and 100%. This combination of LDA with NB method provides the accuracy of 100% outperforming all existing methods. The results prove the effectiveness of this model.
Attention models are typically learned by optimizing one of three standard loss functions that are variously called -- soft attention, hard attention, and latent variable marginal likelihood (LVML) attention. All three paradigms are motivated by the same goal of finding two models -- a `focus' model that `selects' the right \textit{segment} of the input and a `classification' model that processes the selected segment into the target label. However, they differ significantly in the way the selected segments are aggregated, resulting in distinct dynamics and final results. We observe a unique signature of models learned using these paradigms and explain this as a consequence of the evolution of the classification model under gradient descent when the focus model is fixed. We also analyze these paradigms in a simple setting and derive closed-form expressions for the parameter trajectory under gradient flow. With the soft attention loss, the focus model improves quickly at initialization and splutters later on. On the other hand, hard attention loss behaves in the opposite fashion. Based on our observations, we propose a simple hybrid approach that combines the advantages of the different loss functions and demonstrates it on a collection of semi-synthetic and real-world datasets
Following their success in visual recognition tasks, Vision Transformers(ViTs) are being increasingly employed for image restoration. As a few recent works claim that ViTs for image classification also have better robustness properties, we investigate whether the improved adversarial robustness of ViTs extends to image restoration. We consider the recently proposed Restormer model, as well as NAFNet and the "Baseline network" which are both simplified versions of a Restormer. We use Projected Gradient Descent (PGD) and CosPGD, a recently proposed adversarial attack tailored to pixel-wise prediction tasks for our robustness evaluation. Our experiments are performed on real-world images from the GoPro dataset for image deblurring. Our analysis indicates that contrary to as advocated by ViTs in image classification works, these models are highly susceptible to adversarial attacks. We attempt to improve their robustness through adversarial training. While this yields a significant increase in robustness for Restormer, results on other networks are less promising. Interestingly, the design choices in NAFNet and Baselines, which were based on iid performance, and not on robust generalization, seem to be at odds with the model robustness. Thus, we investigate this further and find a fix.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.