亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In global healthcare, respiratory diseases are a leading cause of mortality, underscoring the need for rapid and accurate diagnostics. To advance rapid screening techniques via auscultation, our research focuses on employing one of the largest publicly available medical database of respiratory sounds to train multiple machine learning models able to classify different health conditions. Our method combines Empirical Mode Decomposition (EMD) and spectral analysis to extract physiologically relevant biosignals from acoustic data, closely tied to cardiovascular and respiratory patterns, making our approach apart in its departure from conventional audio feature extraction practices. We use Power Spectral Density analysis and filtering techniques to select Intrinsic Mode Functions (IMFs) strongly correlated with underlying physiological phenomena. These biosignals undergo a comprehensive feature extraction process for predictive modeling. Initially, we deploy a binary classification model that demonstrates a balanced accuracy of 87% in distinguishing between healthy and diseased individuals. Subsequently, we employ a six-class classification model that achieves a balanced accuracy of 72% in diagnosing specific respiratory conditions like pneumonia and chronic obstructive pulmonary disease (COPD). For the first time, we also introduce regression models that estimate age and body mass index (BMI) based solely on acoustic data, as well as a model for gender classification. Our findings underscore the potential of this approach to significantly enhance assistive and remote diagnostic capabilities.

相關內容

The paper addresses asymptotic estimation of normal means under sparsity. The primary focus is estimation of multivariate normal means where we obtain exact asymptotic minimax error under global-local shrinkage prior. This extends the corresponding univariate work of Ghosh and Chakrabarti (2017). In addition, we obtain similar results for the Dirichlet-Laplace prior as considered in Bhattacharya, Pati, Pillai, and Dunson (2015). Also, following van der Pas, Szabo, and van der Vaart (2017), we have been able to derive credible sets for multivariate normal means under global-local priors.

Procedural activity understanding requires perceiving human actions in terms of a broader task, where multiple keysteps are performed in sequence across a long video to reach a final goal state -- such as the steps of a recipe or a DIY fix-it task. Prior work largely treats keystep recognition in isolation of this broader structure, or else rigidly confines keysteps to align with a predefined sequential script. We propose discovering a task graph automatically from how-to videos to represent probabilistically how people tend to execute keysteps, and then leverage this graph to regularize keystep recognition in novel videos. On multiple datasets of real-world instructional videos, we show the impact: more reliable zero-shot keystep localization and improved video representation learning, exceeding the state of the art.

Tinnitus is a prevalent hearing disorder that can be caused by various factors such as age, hearing loss, exposure to loud noises, ear infections or tumors, certain medications, head or neck injuries, and psychological conditions like anxiety and depression. While not every patient requires medical attention, about 20% of sufferers seek clinical intervention. Early diagnosis is crucial for effective treatment. New developments have been made in tinnitus detection to aid in early detection of this illness. Over the past few years, there has been a notable growth in the usage of electroencephalography (EEG) to study variations in oscillatory brain activity related to tinnitus. However, the results obtained from numerous studies vary greatly, leading to conflicting conclusions. Currently, clinicians rely solely on their expertise to identify individuals with tinnitus. Researchers in this field have incorporated various data modalities and machine-learning techniques to aid clinicians in identifying tinnitus characteristics and classifying people with tinnitus. The purpose of writing this article is to review articles that focus on using machine learning (ML) to identify or predict tinnitus patients using EEG signals as input data. We have evaluated 11 articles published between 2016 and 2023 using a systematic literature review (SLR) method. This article arranges perfect summaries of all the research reviewed and compares the significant aspects of each. Additionally, we performed statistical analyses to gain a deeper comprehension of the most recent research in this area. Almost all of the reviewed articles followed a five-step procedure to achieve the goal of tinnitus. Disclosure. Finally, we discuss the open affairs and challenges in this method of tinnitus recognition or prediction and suggest future directions for research.

Breast Cancer (BC) is among women's most lethal health concerns. Early diagnosis can alleviate the mortality rate by helping patients make efficient treatment decisions. Human Epidermal Growth Factor Receptor (HER2) has become one the most lethal subtype of BC. According to the College of American Pathologists American Society of Clinical Oncology (CAP/ASCO), the severity level of HER2 expression can be classified between 0 and 3+ range. HER2 can be detected effectively from immunohistochemical (IHC) and, hematoxylin & eosin (HE) images of different classes such as 0, 1+, 2+, and 3+. An ensemble approach integrated with threshold filtered single instance evaluation (SIE) technique has been proposed in this study to diagnose BC from the multi-categorical expression of HER2 subtypes. Initially, DenseNet201 and Xception have been ensembled into a single classifier as feature extractors with an effective combination of global average pooling, dropout layer, dense layer with a swish activation function, and l2 regularizer, batch normalization, etc. After that, extracted features has been processed through single instance evaluation (SIE) to determine different confidence levels and adjust decision boundary among the imbalanced classes. This study has been conducted on the BC immunohistochemical (BCI) dataset, which is classified by pathologists into four stages of HER2 BC. This proposed approach known as DenseNet201-Xception-SIE with a threshold value of 0.7 surpassed all other existing state-of-art models with an accuracy of 97.12%, precision of 97.15%, and recall of 97.68% on H&E data and, accuracy of 97.56%, precision of 97.57%, and recall of 98.00% on IHC data respectively, maintaining momentous improvement. Finally, Grad-CAM and Guided Grad-CAM have been employed in this study to interpret, how TL-based model works on the histopathology dataset and make decisions from the data.

When perceiving the world from multiple viewpoints, humans have the ability to reason about the complete objects in a compositional manner even when an object is completely occluded from certain viewpoints. Meanwhile, humans are able to imagine novel views after observing multiple viewpoints. Recent remarkable advances in multi-view object-centric learning still leaves some unresolved problems: 1) The shapes of partially or completely occluded objects can not be well reconstructed. 2) The novel viewpoint prediction depends on expensive viewpoint annotations rather than implicit rules in view representations. In this paper, we introduce a time-conditioned generative model for videos. To reconstruct the complete shape of an object accurately, we enhance the disentanglement between the latent representations of objects and views, where the latent representations of time-conditioned views are jointly inferred with a Transformer and then are input to a sequential extension of Slot Attention to learn object-centric representations. In addition, Gaussian processes are employed as priors of view latent variables for video generation and novel-view prediction without viewpoint annotations. Experiments on multiple datasets demonstrate that the proposed model can make object-centric video decomposition, reconstruct the complete shapes of occluded objects, and make novel-view predictions.

Tuberculosis (TB), a bacterial disease mainly affecting the lungs, is one of the leading infectious causes of mortality worldwide. To prevent TB from spreading within the body, which causes life-threatening complications, timely and effective anti-TB treatment is crucial. Cough, an objective biomarker for TB, is a triage tool that monitors treatment response and regresses with successful therapy. Current gold standards for TB diagnosis are slow or inaccessible, especially in rural areas where TB is most prevalent. In addition, current machine learning (ML) diagnosis research, like utilizing chest radiographs, is ineffective and does not monitor treatment progression. To enable effective diagnosis, an ensemble model was developed that analyzes, using a novel ML architecture, coughs' acoustic epidemiologies from smartphones' microphones to detect TB. The architecture includes a 2D-CNN and XGBoost that was trained on 724,964 cough audio samples and demographics from 7 countries. After feature extraction (Mel-spectrograms) and data augmentation (IR-convolution), the model achieved AUROC (area under the receiving operator characteristic) of 88%, surpassing WHO's requirements for screening tests. The results are available within 15 seconds and can easily be accessible via a mobile app. This research helps to improve TB diagnosis through a promising accurate, quick, and accessible triaging tool.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司