亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper focuses on the area of RGB(visible)-NIR(near-infrared) cross-modality image registration, which is crucial for many downstream vision tasks to fully leverage the complementary information present in visible and infrared images. In this field, researchers face two primary challenges - the absence of a correctly-annotated benchmark with viewpoint variations for evaluating RGB-NIR cross-modality registration methods and the problem of inconsistent local features caused by the appearance discrepancy between RGB-NIR cross-modality images. To address these challenges, we first present the RGB-NIR Image Registration (RGB-NIR-IRegis) benchmark, which, for the first time, enables fair and comprehensive evaluations for the task of RGB-NIR cross-modality image registration. Evaluations of previous methods highlight the significant challenges posed by our RGB-NIR-IRegis benchmark, especially on RGB-NIR image pairs with viewpoint variations. To analyze the causes of the unsatisfying performance, we then design several metrics to reveal the toxic impact of inconsistent local features between visible and infrared images on the model performance. This further motivates us to develop a baseline method named Semantic Guidance Transformer (SGFormer), which utilizes high-level semantic guidance to mitigate the negative impact of local inconsistent features. Despite the simplicity of our motivation, extensive experimental results show the effectiveness of our method.

相關內容

圖(tu)(tu)像(xiang)(xiang)配準是圖(tu)(tu)像(xiang)(xiang)處理(li)研(yan)究領(ling)域中(zhong)的(de)一(yi)個(ge)典型問題和(he)技術難(nan)點(dian)(dian),其目(mu)的(de)在(zai)(zai)于(yu)(yu)比較或融合(he)針對同(tong)(tong)一(yi)對象在(zai)(zai)不(bu)(bu)(bu)同(tong)(tong)條件下(xia)獲取(qu)的(de)圖(tu)(tu)像(xiang)(xiang),例如圖(tu)(tu)像(xiang)(xiang)會來自(zi)不(bu)(bu)(bu)同(tong)(tong)的(de)采集(ji)(ji)設備,取(qu)自(zi)不(bu)(bu)(bu)同(tong)(tong)的(de)時(shi)間(jian),不(bu)(bu)(bu)同(tong)(tong)的(de)拍攝視角等(deng)等(deng),有時(shi)也(ye)需要(yao)用(yong)到(dao)針對不(bu)(bu)(bu)同(tong)(tong)對象的(de)圖(tu)(tu)像(xiang)(xiang)配準問題。具體地說,對于(yu)(yu)一(yi)組圖(tu)(tu)像(xiang)(xiang)數據集(ji)(ji)中(zhong)的(de)兩(liang)幅(fu)圖(tu)(tu)像(xiang)(xiang),通過尋找一(yi)種空間(jian)變換(huan)把一(yi)幅(fu)圖(tu)(tu)像(xiang)(xiang)映射到(dao)另一(yi)幅(fu)圖(tu)(tu)像(xiang)(xiang),使(shi)得(de)兩(liang)圖(tu)(tu)中(zhong)對應(ying)于(yu)(yu)空間(jian)同(tong)(tong)一(yi)位(wei)置的(de)點(dian)(dian)一(yi)一(yi)對應(ying)起來,從(cong)而達到(dao)信息融合(he)的(de)目(mu)的(de)。 該技術在(zai)(zai)計算(suan)機視覺、醫學圖(tu)(tu)像(xiang)(xiang)處理(li)以(yi)及材料力(li)學等(deng)領(ling)域都具有廣(guang)泛(fan)的(de)應(ying)用(yong)。根據具體應(ying)用(yong)的(de)不(bu)(bu)(bu)同(tong)(tong),有的(de)側(ce)重于(yu)(yu)通過變換(huan)結果融合(he)兩(liang)幅(fu)圖(tu)(tu)像(xiang)(xiang),有的(de)側(ce)重于(yu)(yu)研(yan)究變換(huan)本(ben)身以(yi)獲得(de)對象的(de)一(yi)些力(li)學屬性。

Multi-resolution methods such as Adaptive Mesh Refinement (AMR) can enhance storage efficiency for HPC applications generating vast volumes of data. However, their applicability is limited and cannot be universally deployed across all applications. Furthermore, integrating lossy compression with multi-resolution techniques to further boost storage efficiency encounters significant barriers. To this end, we introduce an innovative workflow that facilitates high-quality multi-resolution data compression for both uniform and AMR simulations. Initially, to extend the usability of multi-resolution techniques, our workflow employs a compression-oriented Region of Interest (ROI) extraction method, transforming uniform data into a multi-resolution format. Subsequently, to bridge the gap between multi-resolution techniques and lossy compressors, we optimize three distinct compressors, ensuring their optimal performance on multi-resolution data. Lastly, we incorporate an advanced uncertainty visualization method into our workflow to understand the potential impacts of lossy compression. Experimental evaluation demonstrates that our workflow achieves significant compression quality improvements.

This paper proposes a new self-organizing interval type-2 fuzzy neural network with multiple outputs (SOIT2FNN-MO) for multi-step time series prediction. Differing from the traditional six-layer IT2FNN, a nine-layer network is developed to improve prediction accuracy, uncertainty handling and model interpretability. First, a new co-antecedent layer and a modified consequent layer are devised to improve the interpretability of the fuzzy model for multi-step predictions. Second, a new transformation layer is designed to address the potential issues in the vanished rule firing strength caused by highdimensional inputs. Third, a new link layer is proposed to build temporal connections between multi-step predictions. Furthermore, a two-stage self-organizing mechanism is developed to automatically generate the fuzzy rules, in which the first stage is used to create the rule base from empty and perform the initial optimization, while the second stage is to fine-tune all network parameters. Finally, various simulations are carried out on chaotic and microgrid time series prediction problems, demonstrating the superiority of our approach in terms of prediction accuracy, uncertainty handling and model interpretability.

This paper revisits the simple, long-studied, yet still unsolved problem of making image classifiers robust to imperceptible perturbations. Taking CIFAR10 as an example, SOTA clean accuracy is about $100$%, but SOTA robustness to $\ell_{\infty}$-norm bounded perturbations barely exceeds $70$%. To understand this gap, we analyze how model size, dataset size, and synthetic data quality affect robustness by developing the first scaling laws for adversarial training. Our scaling laws reveal inefficiencies in prior art and provide actionable feedback to advance the field. For instance, we discovered that SOTA methods diverge notably from compute-optimal setups, using excess compute for their level of robustness. Leveraging a compute-efficient setup, we surpass the prior SOTA with $20$% ($70$%) fewer training (inference) FLOPs. We trained various compute-efficient models, with our best achieving $74$% AutoAttack accuracy ($+3$% gain). However, our scaling laws also predict robustness slowly grows then plateaus at $90$%: dwarfing our new SOTA by scaling is impractical, and perfect robustness is impossible. To better understand this predicted limit, we carry out a small-scale human evaluation on the AutoAttack data that fools our top-performing model. Concerningly, we estimate that human performance also plateaus near $90$%, which we show to be attributable to $\ell_{\infty}$-constrained attacks' generation of invalid images not consistent with their original labels. Having characterized limiting roadblocks, we outline promising paths for future research.

Multi-modal crowd counting involves estimating crowd density from both visual and thermal/depth images. This task is challenging due to the significant gap between these distinct modalities. In this paper, we propose a novel approach by introducing an auxiliary broker modality and on this basis frame the task as a triple-modal learning problem. We devise a fusion-based method to generate this broker modality, leveraging a non-diffusion, lightweight counterpart of modern denoising diffusion-based fusion models. Additionally, we identify and address the ghosting effect caused by direct cross-modal image fusion in multi-modal crowd counting. Through extensive experimental evaluations on popular multi-modal crowd-counting datasets, we demonstrate the effectiveness of our method, which introduces only 4 million additional parameters, yet achieves promising results. The code is available at //github.com/HenryCilence/Broker-Modality-Crowd-Counting.

Reducing scan time in Positron Emission Tomography (PET) imaging while maintaining high-quality images is crucial for minimizing patient discomfort and radiation exposure. Due to the limited size of datasets and distribution discrepancy across scanners in medical imaging, fine-tuning in a parameter-efficient and effective manner is on the rise. Motivated by the potential of Parameter-Efficient Fine-Tuning (PEFT), we aim to address these issues by effectively leveraging PEFT to improve limited data and GPU resource issues in multi-scanner setups. In this paper, we introduce PETITE, Parameter-Efficient Fine-Tuning for MultI-scanner PET to PET REconstruction that uses fewer than 1% of the parameters. To the best of our knowledge, this study is the first to systematically explore the efficacy of diverse PEFT techniques in medical imaging reconstruction tasks via prevalent encoder-decoder-type deep models. This investigation, in particular, brings intriguing insights into PETITE as we show further improvements by treating encoder and decoder separately and mixing different PEFT methods, namely, Mix-PEFT. Using multi-scanner PET datasets comprised of five different scanners, we extensively test the cross-scanner PET scan time reduction performances (i.e., a model pre-trained on one scanner is fine-tuned on a different scanner) of 21 feasible Mix-PEFT combinations to derive optimal PETITE. We show that training with less than 1% parameters using PETITE performs on par with full fine-tuning (i.e., 100% parameter)

Semantic segmentation of road elements in 2D images is a crucial task in the recognition of some static objects such as lane lines and free space. In this paper, we propose DHSNet,which extracts the objects features with a end-to-end architecture along with a heatmap proposal. Deformable convolutions are also utilized in the proposed network. The DHSNet finely combines low-level feature maps with high-level ones by using upsampling operators as well as downsampling operators in a U-shape manner. Besides, DHSNet also aims to capture static objects of various shapes and scales. We also predict a proposal heatmap to detect the proposal points for more accurate target aiming in the network.

This paper introduces HuLP, a Human-in-the-Loop for Prognosis model designed to enhance the reliability and interpretability of prognostic models in clinical contexts, especially when faced with the complexities of missing covariates and outcomes. HuLP offers an innovative approach that enables human expert intervention, empowering clinicians to interact with and correct models' predictions, thus fostering collaboration between humans and AI models to produce more accurate prognosis. Additionally, HuLP addresses the challenges of missing data by utilizing neural networks and providing a tailored methodology that effectively handles missing data. Traditional methods often struggle to capture the nuanced variations within patient populations, leading to compromised prognostic predictions. HuLP imputes missing covariates based on imaging features, aligning more closely with clinician workflows and enhancing reliability. We conduct our experiments on two real-world, publicly available medical datasets to demonstrate the superiority and competitiveness of HuLP.

This paper introduces PDEformer-1, a versatile neural solver capable of simultaneously addressing various partial differential equations (PDEs). With the PDE represented as a computational graph, we facilitate the seamless integration of symbolic and numeric information inherent in a PDE. A graph Transformer and an implicit neural representation (INR) are employed subsequently to generate mesh-free predicted solutions. We generated a dataset with up to three million samples involving diverse one-dimensional PDEs to pretrain our model. Compared with baseline models trained specifically on benchmark datasets, our pretrained model achieves comparable accuracy via zero-shot inference, and the advantage expands after finetuning. For PDEs new or unseen in the pretraining stage, our model can adapt quickly by finetuning on a relatively small set of examples from the target equation. Additionally, PDEformer-1 demonstrates promising results in the inverse problem of PDE scalar coefficient recovery and coefficient field recovery.

This paper updates the survey of AI accelerators and processors from past three years. This paper collects and summarizes the current commercial accelerators that have been publicly announced with peak performance and power consumption numbers. The performance and power values are plotted on a scatter graph, and a number of dimensions and observations from the trends on this plot are again discussed and analyzed. Two new trends plots based on accelerator release dates are included in this year's paper, along with the additional trends of some neuromorphic, photonic, and memristor-based inference accelerators.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

北京阿比特科技有限公司