Federated edge learning (FEL) can training a global model from terminal nodes' local dataset, which can make full use of the computing resources of terminal nodes and performs more extensive and efficient machine learning on terminal nodes with protecting user information requirements. Performance of FEL will be suffered from long delay or fault decision as the master collects partial gradients from stragglers which cannot return correct results within a deadline. Inspired by this, in this paper, we propose a novel coded FEL to mitigate stragglers for synchronous gradient with a two-stage dynamic scheme, where we start with part of workers for a duration of before starting the second stage, and on completion of at the first stage, we start remaining workers in the second stage. In particular, the computation latency and transmission latency is essential and should be quantitatively analyzed. Then the dynamically coded coefficients scheme is proposed which is based on historical information including worker completion time. For performance optimization of FEL, a Lyapunov function is designed to maximize admission data balancing fairness and two stage dynamic coding scheme is designed to maximize arrival data among workers. Experimental evidence verifies the derived properties and demonstrates that our proposed solution achieves a better performance for practical network parameters and benchmark datasets in terms of accuracy and resource utilization in the FEL system.
Layer normalization (LN) is a widely adopted deep learning technique especially in the era of foundation models. Recently, LN has been shown to be surprisingly effective in federated learning (FL) with non-i.i.d. data. However, exactly why and how it works remains mysterious. In this work, we reveal the profound connection between layer normalization and the label shift problem in federated learning. To understand layer normalization better in FL, we identify the key contributing mechanism of normalization methods in FL, called feature normalization (FN), which applies normalization to the latent feature representation before the classifier head. Although LN and FN do not improve expressive power, they control feature collapse and local overfitting to heavily skewed datasets, and thus accelerates global training. Empirically, we show that normalization leads to drastic improvements on standard benchmarks under extreme label shift. Moreover, we conduct extensive ablation studies to understand the critical factors of layer normalization in FL. Our results verify that FN is an essential ingredient inside LN to significantly improve the convergence of FL while remaining robust to learning rate choices, especially under extreme label shift where each client has access to few classes.
Deep learning has made significant strides in video understanding tasks, but the computation required to classify lengthy and massive videos using clip-level video classifiers remains impractical and prohibitively expensive. To address this issue, we propose Audio-Visual Glance Network (AVGN), which leverages the commonly available audio and visual modalities to efficiently process the spatio-temporally important parts of a video. AVGN firstly divides the video into snippets of image-audio clip pair and employs lightweight unimodal encoders to extract global visual features and audio features. To identify the important temporal segments, we use an Audio-Visual Temporal Saliency Transformer (AV-TeST) that estimates the saliency scores of each frame. To further increase efficiency in the spatial dimension, AVGN processes only the important patches instead of the whole images. We use an Audio-Enhanced Spatial Patch Attention (AESPA) module to produce a set of enhanced coarse visual features, which are fed to a policy network that produces the coordinates of the important patches. This approach enables us to focus only on the most important spatio-temporally parts of the video, leading to more efficient video recognition. Moreover, we incorporate various training techniques and multi-modal feature fusion to enhance the robustness and effectiveness of our AVGN. By combining these strategies, our AVGN sets new state-of-the-art performance in multiple video recognition benchmarks while achieving faster processing speed.
Multi-agent reinforcement learning (MARL) is a powerful tool for training automated systems acting independently in a common environment. However, it can lead to sub-optimal behavior when individual incentives and group incentives diverge. Humans are remarkably capable at solving these social dilemmas. It is an open problem in MARL to replicate such cooperative behaviors in selfish agents. In this work, we draw upon the idea of formal contracting from economics to overcome diverging incentives between agents in MARL. We propose an augmentation to a Markov game where agents voluntarily agree to binding state-dependent transfers of reward, under pre-specified conditions. Our contributions are theoretical and empirical. First, we show that this augmentation makes all subgame-perfect equilibria of all fully observed Markov games exhibit socially optimal behavior, given a sufficiently rich space of contracts. Next, we complement our game-theoretic analysis by showing that state-of-the-art RL algorithms learn socially optimal policies given our augmentation. Our experiments include classic static dilemmas like Stag Hunt, Prisoner's Dilemma and a public goods game, as well as dynamic interactions that simulate traffic, pollution management and common pool resource management.
Graph neural networks (GNNs) are among the most powerful tools in deep learning. They routinely solve complex problems on unstructured networks, such as node classification, graph classification, or link prediction, with high accuracy. However, both inference and training of GNNs are complex, and they uniquely combine the features of irregular graph processing with dense and regular computations. This complexity makes it very challenging to execute GNNs efficiently on modern massively parallel architectures. To alleviate this, we first design a taxonomy of parallelism in GNNs, considering data and model parallelism, and different forms of pipelining. Then, we use this taxonomy to investigate the amount of parallelism in numerous GNN models, GNN-driven machine learning tasks, software frameworks, or hardware accelerators. We use the work-depth model, and we also assess communication volume and synchronization. We specifically focus on the sparsity/density of the associated tensors, in order to understand how to effectively apply techniques such as vectorization. We also formally analyze GNN pipelining, and we generalize the established Message-Passing class of GNN models to cover arbitrary pipeline depths, facilitating future optimizations. Finally, we investigate different forms of asynchronicity, navigating the path for future asynchronous parallel GNN pipelines. The outcomes of our analysis are synthesized in a set of insights that help to maximize GNN performance, and a comprehensive list of challenges and opportunities for further research into efficient GNN computations. Our work will help to advance the design of future GNNs.
Deploying machine learning (ML) models in the wild is challenging as it suffers from distribution shifts, where the model trained on an original domain cannot generalize well to unforeseen diverse transfer domains. To address this challenge, several test-time adaptation (TTA) methods have been proposed to improve the generalization ability of the target pre-trained models under test data to cope with the shifted distribution. The success of TTA can be credited to the continuous fine-tuning of the target model according to the distributional hint from the test samples during test time. Despite being powerful, it also opens a new attack surface, i.e., test-time poisoning attacks, which are substantially different from previous poisoning attacks that occur during the training time of ML models (i.e., adversaries cannot intervene in the training process). In this paper, we perform the first test-time poisoning attack against four mainstream TTA methods, including TTT, DUA, TENT, and RPL. Concretely, we generate poisoned samples based on the surrogate models and feed them to the target TTA models. Experimental results show that the TTA methods are generally vulnerable to test-time poisoning attacks. For instance, the adversary can feed as few as 10 poisoned samples to degrade the performance of the target model from 76.20% to 41.83%. Our results demonstrate that TTA algorithms lacking a rigorous security assessment are unsuitable for deployment in real-life scenarios. As such, we advocate for the integration of defenses against test-time poisoning attacks into the design of TTA methods.
Graph neural networks (GNNs) are a type of deep learning models that learning over graphs, and have been successfully applied in many domains. Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs. As a remedy, distributed computing becomes a promising solution of training large-scale GNNs, since it is able to provide abundant computing resources. However, the dependency of graph structure increases the difficulty of achieving high-efficiency distributed GNN training, which suffers from the massive communication and workload imbalance. In recent years, many efforts have been made on distributed GNN training, and an array of training algorithms and systems have been proposed. Yet, there is a lack of systematic review on the optimization techniques from graph processing to distributed execution. In this survey, we analyze three major challenges in distributed GNN training that are massive feature communication, the loss of model accuracy and workload imbalance. Then we introduce a new taxonomy for the optimization techniques in distributed GNN training that address the above challenges. The new taxonomy classifies existing techniques into four categories that are GNN data partition, GNN batch generation, GNN execution model, and GNN communication protocol.We carefully discuss the techniques in each category. In the end, we summarize existing distributed GNN systems for multi-GPUs, GPU-clusters and CPU-clusters, respectively, and give a discussion about the future direction on scalable GNNs.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.
Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.
Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.