亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic evaluating systems are fundamental issues in sports technologies. In many sports, such as figure skating, automated evaluating methods based on pose estimation have been proposed. However, previous studies have evaluated skaters' skills in 2D analysis. In this paper, we propose an automatic edge error judgment system with a monocular smartphone camera and inertial sensors, which enable us to analyze 3D motions. Edge error is one of the most significant scoring items and is challenging to automatically judge due to its 3D motion. The results show that the model using 3D joint position coordinates estimated from the monocular camera as the input feature had the highest accuracy at 83% for unknown skaters' data. We also analyzed the detailed motion analysis for edge error judgment. These results indicate that the monocular camera can be used to judge edge errors automatically. We will provide the figure skating single Lutz jump dataset, including pre-processed videos and labels, at //github.com/ryota-takedalab/JudgeAI-LutzEdge.

相關內容

Pilot studies are an essential cornerstone of the design of crowdsourcing campaigns, yet they are often only mentioned in passing in the scholarly literature. A lack of details surrounding pilot studies in crowdsourcing research hinders the replication of studies and the reproduction of findings, stalling potential scientific advances. We conducted a systematic literature review on the current state of pilot study reporting at the intersection of crowdsourcing and HCI research. Our review of ten years of literature included 171 articles published in the proceedings of the Conference on Human Computation and Crowdsourcing (AAAI HCOMP) and the ACM Digital Library. We found that pilot studies in crowdsourcing research (i.e., crowd pilot studies) are often under-reported in the literature. Important details, such as the number of workers and rewards to workers, are often not reported. On the basis of our findings, we reflect on the current state of practice and formulate a set of best practice guidelines for reporting crowd pilot studies in crowdsourcing research. We also provide implications for the design of crowdsourcing platforms and make practical suggestions for supporting crowd pilot study reporting.

Unknown-unknowns are operational scenarios in systems that are not accounted for in the design and test phase. In such scenarios, the operational behavior of the Human-in-loop (HIL) Human-in-Plant (HIP) systems is not guaranteed to meet requirements such as safety and efficacy. We propose a novel framework for analyzing the operational output characteristics of safety-critical HIL-HIP systems that can discover unknown-unknown scenarios and evaluate potential safety hazards. We propose dynamics-induced hybrid recurrent neural networks (DiH-RNN) to mine a physics-guided surrogate model (PGSM) that checks for deviation of the cyber-physical system (CPS) from safety-certified operational characteristics. The PGSM enables early detection of unknown-unknowns based on the physical laws governing the system. We demonstrate the detection of operational changes in an Artificial Pancreas(AP) due to unknown insulin cartridge errors.

AI Alignment research seeks to align human and AI goals to ensure independent actions by a machine are always ethical. This paper argues empathy is necessary for this task, despite being often neglected in favor of more deductive approaches. We offer an inside-out approach that grounds morality within the context of the brain as a basis for algorithmically understanding ethics and empathy. These arguments are justified via a survey of relevant literature. The paper concludes with a suggested experimental approach to future research and some initial experimental observations.

Adversarial training is one of the most popular methods for training methods robust to adversarial attacks, however, it is not well-understood from a theoretical perspective. We prove and existence, regularity, and minimax theorems for adversarial surrogate risks. Our results explain some empirical observations on adversarial robustness from prior work and suggest new directions in algorithm development. Furthermore, our results extend previously known existence and minimax theorems for the adversarial classification risk to surrogate risks.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司