亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under $s$-Gevrey assumptions on on the residual equation, we establish $s$-Gevrey bounds on the Fr\'echet derivatives of the local data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input.

相關內容

There are many numerical methods for solving partial different equations (PDEs) on manifolds such as classical implicit, finite difference, finite element, and isogeometric analysis methods which aim at improving the interoperability between finite element method and computer aided design (CAD) software. However, these approaches have difficulty when the domain has singularities since the solution at the singularity may be multivalued. This paper develops a novel numerical approach to solve elliptic PDEs on real, closed, connected, orientable, and almost smooth algebraic curves and surfaces. Our method integrates numerical algebraic geometry, differential geometry, and a finite difference scheme which is demonstrated on several examples.

We present a numerical iterative optimization algorithm for the minimization of a cost function consisting of a linear combination of three convex terms, one of which is differentiable, a second one is prox-simple and the third one is the composition of a linear map and a prox-simple function. The algorithm's special feature lies in its ability to approximate, in a single iteration run, the minimizers of the cost function for many different values of the parameters determining the relative weight of the three terms in the cost function. A proof of convergence of the algorithm, based on an inexact variable metric approach, is also provided. As a special case, one recovers a generalization of the primal-dual algorithm of Chambolle and Pock, and also of the proximal-gradient algorithm. Finally, we show how it is related to a primal-dual iterative algorithm based on inexact proximal evaluations of the non-smooth terms of the cost function.

We study the high-order local discontinuous Galerkin (LDG) method for the $p$-Laplace equation. We reformulate our spatial discretization as an equivalent convex minimization problem and use a preconditioned gradient descent method as the nonlinear solver. For the first time, a weighted preconditioner that provides $hk$-independent convergence is applied in the LDG setting. For polynomial order $k \geqslant 1$, we rigorously establish the solvability of our scheme and provide a priori error estimates in a mesh-dependent energy norm. Our error estimates are under a different and non-equivalent distance from existing LDG results. For arbitrarily high-order polynomials under the assumption that the exact solution has enough regularity, the error estimates demonstrate the potential for high-order accuracy. Our numerical results exhibit the desired convergence speed facilitated by the preconditioner, and we observe best convergence rates in gradient variables in alignment with linear LDG, and optimal rates in the primal variable when $1 < p \leqslant 2$.

Generalized linear models (GLMs) are popular for data-analysis in almost all quantitative sciences, but the choice of likelihood family and link function is often difficult. This motivates the search for likelihoods and links that minimize the impact of potential misspecification. We perform a large-scale simulation study on double-bounded and lower-bounded response data where we systematically vary both true and assumed likelihoods and links. In contrast to previous studies, we also study posterior calibration and uncertainty metrics in addition to point-estimate accuracy. Our results indicate that certain likelihoods and links can be remarkably robust to misspecification, performing almost on par with their respective true counterparts. Additionally, normal likelihood models with identity link (i.e., linear regression) often achieve calibration comparable to the more structurally faithful alternatives, at least in the studied scenarios. On the basis of our findings, we provide practical suggestions for robust likelihood and link choices in GLMs.

This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with $L^{\infty}$-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of $O(e^{-cn^{1/d}})$ for MS-GFEM for all these problems, improving upon the $O(e^{-cn^{1/(d+1)}})$ rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an $O(|\log\epsilon|^{d})$-term separable approximation on well-separated domains with error $\epsilon>0$. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an $O(|\log\epsilon|^{d+1})$-term separable approximation was proved for Poisson-type problems.

When the eigenvalues of the coefficient matrix for a linear scalar ordinary differential equation are of large magnitude, its solutions exhibit complicated behaviour, such as high-frequency oscillations, rapid growth or rapid decay. The cost of representing such solutions using standard techniques grows with the magnitudes of the eigenvalues. As a consequence, the running times of most solvers for ordinary differential equations also grow with these eigenvalues. However, a large class of scalar ordinary differential equations with slowly-varying coefficients admit slowly-varying phase functions that can be represented at a cost which is bounded independent of the magnitudes of the eigenvalues of the corresponding coefficient matrix. Here, we introduce a numerical algorithm for constructing slowly-varying phase functions which represent the solutions of a linear scalar ordinary differential equation. Our method's running time depends on the complexity of the equation's coefficients, but is bounded independent of the magnitudes of the equation's eigenvalues. Once the phase functions have been constructed, essentially any reasonable initial or boundary value problem for the scalar equation can be easily solved. We present the results of numerical experiments showing that, despite its greater generality, our algorithm is competitive with state-of-the-art methods for solving highly-oscillatory second order differential equations. We also compare our method with Magnus-type exponential integrators and find that our approach is orders of magnitude faster in the high-frequency regime.

For a nonlinear dynamical system that depends on parameters, the paper introduces a novel tensorial reduced-order model (TROM). The reduced model is projection-based, and for systems with no parameters involved, it resembles proper orthogonal decomposition (POD) combined with the discrete empirical interpolation method (DEIM). For parametric systems, TROM employs low-rank tensor approximations in place of truncated SVD, a key dimension-reduction technique in POD with DEIM. Three popular low-rank tensor compression formats are considered for this purpose: canonical polyadic, Tucker, and tensor train. The use of multilinear algebra tools allows the incorporation of information about the parameter dependence of the system into the reduced model and leads to a POD-DEIM type ROM that (i) is parameter-specific (localized) and predicts the system dynamics for out-of-training set (unseen) parameter values, (ii) mitigates the adverse effects of high parameter space dimension, (iii) has online computational costs that depend only on tensor compression ranks but not on the full-order model size, and (iv) achieves lower reduced space dimensions compared to the conventional POD-DEIM ROM. The paper explains the method, analyzes its prediction power, and assesses its performance for two specific parameter-dependent nonlinear dynamical systems.

Factor models have been widely used to summarize the variability of high-dimensional data through a set of factors with much lower dimensionality. Gaussian linear factor models have been particularly popular due to their interpretability and ease of computation. However, in practice, data often violate the multivariate Gaussian assumption. To characterize higher-order dependence and nonlinearity, models that include factors as predictors in flexible multivariate regression are popular, with GP-LVMs using Gaussian process (GP) priors for the regression function and VAEs using deep neural networks. Unfortunately, such approaches lack identifiability and interpretability and tend to produce brittle and non-reproducible results. To address these problems by simplifying the nonparametric factor model while maintaining flexibility, we propose the NIFTY framework, which parsimoniously transforms uniform latent variables using one-dimensional nonlinear mappings and then applies a linear generative model. The induced multivariate distribution falls into a flexible class while maintaining simple computation and interpretation. We prove that this model is identifiable and empirically study NIFTY using simulated data, observing good performance in density estimation and data visualization. We then apply NIFTY to bird song data in an environmental monitoring application.

We present a formulation for high-order generalized periodicity conditions in the context of a high-order electromechanical theory including flexoelectricity, strain gradient elasticity and gradient dielectricity, with the goal of studying periodic architected metamaterials. Such theory results in fourth-order governing partial differential equations, and the periodicity conditions involve continuity across the periodic boundary of primal fields (displacement and electric potential) and their normal derivatives, continuity of the corresponding dual generalized forces (tractions, double tractions, surface charge density and double surface charge density). Rather than imposing these conditions numerically as explicit constraints, we develop an approximation space which fulfils generalized periodicity by construction. Our method naturally allows us to impose general macroscopic fields (strains/stresses and electric fields/electric displacements) along arbitrary directions, enabling the characterization of the material anisotropy. We apply the proposed method to study periodic architected metamaterials with apparent piezoelectricity. We first verify the method by directly comparing the results with a large periodic structure, then apply it to evaluate the anisotropic apparently piezoelectricity of a geometrically polarized 2D lattice, and finally demonstrate the application of the method in a 3D architected metamaterial.

We introduce a novel algorithm that converges to level-set convex viscosity solutions of high-dimensional Hamilton-Jacobi equations. The algorithm is applicable to a broad class of curvature motion PDEs, as well as a recently developed Hamilton-Jacobi equation for the Tukey depth, which is a statistical depth measure of data points. A main contribution of our work is a new monotone scheme for approximating the direction of the gradient, which allows for monotone discretizations of pure partial derivatives in the direction of, and orthogonal to, the gradient. We provide a convergence analysis of the algorithm on both regular Cartesian grids and unstructured point clouds in any dimension and present numerical experiments that demonstrate the effectiveness of the algorithm in approximating solutions of the affine flow in two dimensions and the Tukey depth measure of high-dimensional datasets such as MNIST and FashionMNIST.

北京阿比特科技有限公司