亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To identify the causes of performance problems or to predict process behavior, it is essential to have correct and complete event data. This is particularly important for distributed systems with shared resources, e.g., one case can block another case competing for the same machine, leading to inter-case dependencies in performance. However, due to a variety of reasons, real-life systems often record only a subset of all events taking place. To understand and analyze the behavior and performance of processes with shared resources, we aim to reconstruct bounds for timestamps of events in a case that must have happened but were not recorded by inference over events in other cases in the system. We formulate and solve the problem by systematically introducing multi-entity concepts in event logs and process models. We introduce a partial-order based model of a multi-entity event log and a corresponding compositional model for multi-entity processes. We define PQR-systems as a special class of multi-entity processes with shared resources and queues. We then study the problem of inferring from an incomplete event log unobserved events and their timestamps that are globally consistent with a PQR-system. We solve the problem by reconstructing unobserved traces of resources and queues according to the PQR-model and derive bounds for their timestamps using a linear program. While the problem is illustrated for material handling systems like baggage handling systems in airports, the approach can be applied to other settings where recording is incomplete. The ideas have been implemented in ProM and were evaluated using both synthetic and real-life event logs.

相關內容

Longitudinal and survival sub-models are two building blocks for joint modelling of longitudinal and time to event data. Extensive research indicates separate analysis of these two processes could result in biased outputs due to their associations. Conditional independence between measurements of biomarkers and event time process given latent classes or random effects is a common approach for characterising the association between the two sub-models while taking the heterogeneity among the population into account. However, this assumption is tricky to validate because of the unobservable latent variables. Thus a Gaussian copula joint model with random effects is proposed to accommodate the scenarios where the conditional independence assumption is questionable. In our proposed model, the conventional joint model assuming conditional independence is a special case when the association parameter in the Gaussian copula shrinks to zero. Simulation studies and real data application are carried out to evaluate the performance of our proposed model. In addition, personalised dynamic predictions of survival probabilities are obtained based on the proposed model and comparisons are made to the predictions obtained under the conventional joint model.

In settings as diverse as autonomous vehicles, cloud computing, and pandemic quarantines, requests for service can arrive in near or true simultaneity with one another. This creates batches of arrivals to the underlying queueing system. In this paper, we study the staffing problem for the batch arrival queue. We show that batches place a significant stress on services, and thus require a high amount of resources and preparation. In fact, we find that there is no economy of scale as the number of customers in each batch increases, creating a stark contrast with the square root safety staffing rules enjoyed by systems with solitary arrivals of customers. Furthermore, when customers arrive both quickly and in batches, an economy of scale can exist, but it is weaker than what is typically expected. Methodologically, these staffing results follow from novel large batch and hybrid large-batch-and-large-rate limits of the general multi-server queueing model. In the pure large batch limit, we establish the first formal connection between multi-server queues and storage processes, another family of stochastic processes. By consequence, we show that the limit of the batch scaled queue length process is not asymptotically normal, and that, in fact, the fluid and diffusion-type limits coincide. This is what drives our staffing analysis of the batch arrival queue, and what implies that the (safety) staffing of this system must be directly proportional to the batch size just to achieve a non-degenerate probability of customers waiting.

Type-preserving translations are effective rigorous tools in the study of core programming calculi. In this paper, we develop a new typed translation that connects sequential and concurrent calculi; it is governed by expressive type systems that control resource consumption. Our main contribution is the source language, a new resource \lambda-calculus with non-determinism and failures, dubbed \ulamf. In \ulamf, resources are sharply separated into linear and unrestricted; failures are explicit and arise following this separation. We equip \ulamf with a type system based on non-idempotent intersection types, which controls resources and fail-prone computation. The target language is an existing session-typed \pi-calculus, \spi, which results from a Curry-Howard correspondence between linear logic and session types for concurrency. Our typed translation of \ulamf into \spi subsumes our prior work; interestingly, it elegantly treats unrestricted resources in \lamrfailunres as client-server session behaviors in \spi.

Active inference is a unifying theory for perception and action resting upon the idea that the brain maintains an internal model of the world by minimizing free energy. From a behavioral perspective, active inference agents can be seen as self-evidencing beings that act to fulfill their optimistic predictions, namely preferred outcomes or goals. In contrast, reinforcement learning requires human-designed rewards to accomplish any desired outcome. Although active inference could provide a more natural self-supervised objective for control, its applicability has been limited because of the shortcomings in scaling the approach to complex environments. In this work, we propose a contrastive objective for active inference that strongly reduces the computational burden in learning the agent's generative model and planning future actions. Our method performs notably better than likelihood-based active inference in image-based tasks, while also being computationally cheaper and easier to train. We compare to reinforcement learning agents that have access to human-designed reward functions, showing that our approach closely matches their performance. Finally, we also show that contrastive methods perform significantly better in the case of distractors in the environment and that our method is able to generalize goals to variations in the background.

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

Precise user and item embedding learning is the key to building a successful recommender system. Traditionally, Collaborative Filtering(CF) provides a way to learn user and item embeddings from the user-item interaction history. However, the performance is limited due to the sparseness of user behavior data. With the emergence of online social networks, social recommender systems have been proposed to utilize each user's local neighbors' preferences to alleviate the data sparsity for better user embedding modeling. We argue that, for each user of a social platform, her potential embedding is influenced by her trusted users. As social influence recursively propagates and diffuses in the social network, each user's interests change in the recursive process. Nevertheless, the current social recommendation models simply developed static models by leveraging the local neighbors of each user without simulating the recursive diffusion in the global social network, leading to suboptimal recommendation performance. In this paper, we propose a deep influence propagation model to stimulate how users are influenced by the recursive social diffusion process for social recommendation. For each user, the diffusion process starts with an initial embedding that fuses the related features and a free user latent vector that captures the latent behavior preference. The key idea of our proposed model is that we design a layer-wise influence propagation structure to model how users' latent embeddings evolve as the social diffusion process continues. We further show that our proposed model is general and could be applied when the user~(item) attributes or the social network structure is not available. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model, with more than 13% performance improvements over the best baselines.

Reasoning is essential for the development of large knowledge graphs, especially for completion, which aims to infer new triples based on existing ones. Both rules and embeddings can be used for knowledge graph reasoning and they have their own advantages and difficulties. Rule-based reasoning is accurate and explainable but rule learning with searching over the graph always suffers from efficiency due to huge search space. Embedding-based reasoning is more scalable and efficient as the reasoning is conducted via computation between embeddings, but it has difficulty learning good representations for sparse entities because a good embedding relies heavily on data richness. Based on this observation, in this paper we explore how embedding and rule learning can be combined together and complement each other's difficulties with their advantages. We propose a novel framework IterE iteratively learning embeddings and rules, in which rules are learned from embeddings with proper pruning strategy and embeddings are learned from existing triples and new triples inferred by rules. Evaluations on embedding qualities of IterE show that rules help improve the quality of sparse entity embeddings and their link prediction results. We also evaluate the efficiency of rule learning and quality of rules from IterE compared with AMIE+, showing that IterE is capable of generating high quality rules more efficiently. Experiments show that iteratively learning embeddings and rules benefit each other during learning and prediction.

Inferencing with network data necessitates the mapping of its nodes into a vector space, where the relationships are preserved. However, with multi-layered networks, where multiple types of relationships exist for the same set of nodes, it is crucial to exploit the information shared between layers, in addition to the distinct aspects of each layer. In this paper, we propose a novel approach that first obtains node embeddings in all layers jointly via DeepWalk on a \textit{supra} graph, which allows interactions between layers, and then fine-tunes the embeddings to encourage cohesive structure in the latent space. With empirical studies in node classification, link prediction and multi-layered community detection, we show that the proposed approach outperforms existing single- and multi-layered network embedding algorithms on several benchmarks. In addition to effectively scaling to a large number of layers (tested up to $37$), our approach consistently produces highly modular community structure, even when compared to methods that directly optimize for the modularity function.

Machine Learning is a widely-used method for prediction generation. These predictions are more accurate when the model is trained on a larger dataset. On the other hand, the data is usually divided amongst different entities. For privacy reasons, the training can be done locally and then the model can be safely aggregated amongst the participants. However, if there are only two participants in \textit{Collaborative Learning}, the safe aggregation loses its power since the output of the training already contains much information about the participants. To resolve this issue, they must employ privacy-preserving mechanisms, which inevitably affect the accuracy of the model. In this paper, we model the training process as a two-player game where each player aims to achieve a higher accuracy while preserving its privacy. We introduce the notion of \textit{Price of Privacy}, a novel approach to measure the effect of privacy protection on the accuracy of the model. We develop a theoretical model for different player types, and we either find or prove the existence of a Nash Equilibrium with some assumptions. Moreover, we confirm these assumptions via a Recommendation Systems use case: for a specific learning algorithm, we apply three privacy-preserving mechanisms on two real-world datasets. Finally, as a complementary work for the designed game, we interpolate the relationship between privacy and accuracy for this use case and present three other methods to approximate it in a real-world scenario.

Recommender systems are one of the most successful applications of data mining and machine learning technology in practice. Academic research in the field is historically often based on the matrix completion problem formulation, where for each user-item-pair only one interaction (e.g., a rating) is considered. In many application domains, however, multiple user-item interactions of different types can be recorded over time. And, a number of recent works have shown that this information can be used to build richer individual user models and to discover additional behavioral patterns that can be leveraged in the recommendation process. In this work we review existing works that consider information from such sequentially-ordered user- item interaction logs in the recommendation process. Based on this review, we propose a categorization of the corresponding recommendation tasks and goals, summarize existing algorithmic solutions, discuss methodological approaches when benchmarking what we call sequence-aware recommender systems, and outline open challenges in the area.

北京阿比特科技有限公司