亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents DFL-TORO, a novel Demonstration Framework for Learning Time-Optimal Robotic tasks via One-shot kinesthetic demonstration. It aims at optimizing the process of Learning from Demonstration (LfD), applied in the manufacturing sector. As the effectiveness of LfD is challenged by the quality and efficiency of human demonstrations, our approach offers a streamlined method to intuitively capture task requirements from human teachers, by reducing the need for multiple demonstrations. Furthermore, we propose an optimization-based smoothing algorithm that ensures time-optimal and jerk-regulated demonstration trajectories, while also adhering to the robot's kinematic constraints. The result is a significant reduction in noise, thereby boosting the robot's operation efficiency. Evaluations using a Franka Emika Research 3 (FR3) robot for a variety of tasks further substantiate the efficacy of our framework, highlighting its potential to transform kinesthetic demonstrations in contemporary manufacturing environments.

相關內容

機器人(英語:Robot)包括一切模擬人類行為或思想與模擬其他生物的機械(如機器狗,機器貓等)。狹義上對機器人的定義還有很多分類法及爭議,有些電腦程序甚至也被稱為機器人。在當代工業中,機器人指能自動運行任務的人造機器設備,用以取代或協助人類工作,一般會是機電設備,由計算機程序或是電子電路控制。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

We present Multi-View Attentive Contextualization (MvACon), a simple yet effective method for improving 2D-to-3D feature lifting in query-based multi-view 3D (MV3D) object detection. Despite remarkable progress witnessed in the field of query-based MV3D object detection, prior art often suffers from either the lack of exploiting high-resolution 2D features in dense attention-based lifting, due to high computational costs, or from insufficiently dense grounding of 3D queries to multi-scale 2D features in sparse attention-based lifting. Our proposed MvACon hits the two birds with one stone using a representationally dense yet computationally sparse attentive feature contextualization scheme that is agnostic to specific 2D-to-3D feature lifting approaches. In experiments, the proposed MvACon is thoroughly tested on the nuScenes benchmark, using both the BEVFormer and its recent 3D deformable attention (DFA3D) variant, as well as the PETR, showing consistent detection performance improvement, especially in enhancing performance in location, orientation, and velocity prediction. It is also tested on the Waymo-mini benchmark using BEVFormer with similar improvement. We qualitatively and quantitatively show that global cluster-based contexts effectively encode dense scene-level contexts for MV3D object detection. The promising results of our proposed MvACon reinforces the adage in computer vision -- ``(contextualized) feature matters".

This paper explores Minimum Bayes Risk (MBR) decoding for self-improvement in machine translation (MT), particularly for domain adaptation and low-resource languages. We implement the self-improvement process by fine-tuning the model on its MBR-decoded forward translations. By employing COMET as the MBR utility metric, we aim to achieve the reranking of translations that better aligns with human preferences. The paper explores the iterative application of this approach and the potential need for language-specific MBR utility metrics. The results demonstrate significant enhancements in translation quality for all examined language pairs, including successful application to domain-adapted models and generalisation to low-resource settings. This highlights the potential of COMET-guided MBR for efficient MT self-improvement in various scenarios.

When editing a video, a piece of attractive background music is indispensable. However, video background music generation tasks face several challenges, for example, the lack of suitable training datasets, and the difficulties in flexibly controlling the music generation process and sequentially aligning the video and music. In this work, we first propose a high-quality music-video dataset BGM909 with detailed annotation and shot detection to provide multi-modal information about the video and music. We then present evaluation metrics to assess music quality, including music diversity and alignment between music and video with retrieval precision metrics. Finally, we propose the Diff-BGM framework to automatically generate the background music for a given video, which uses different signals to control different aspects of the music during the generation process, i.e., uses dynamic video features to control music rhythm and semantic features to control the melody and atmosphere. We propose to align the video and music sequentially by introducing a segment-aware cross-attention layer. Experiments verify the effectiveness of our proposed method. The code and models are available at //github.com/sizhelee/Diff-BGM.

In this paper, we introduce an alternative approach to enhancing Multi-Agent Reinforcement Learning (MARL) through the integration of domain knowledge and attention-based policy mechanisms. Our methodology focuses on the incorporation of domain-specific expertise into the learning process, which simplifies the development of collaborative behaviors. This approach aims to reduce the complexity and learning overhead typically associated with MARL by enabling agents to concentrate on essential aspects of complex tasks, thus optimizing the learning curve. The utilization of attention mechanisms plays a key role in our model. It allows for the effective processing of dynamic context data and nuanced agent interactions, leading to more refined decision-making. Applied in standard MARL scenarios, such as the Stanford Intelligent Systems Laboratory (SISL) Pursuit and Multi-Particle Environments (MPE) Simple Spread, our method has been shown to improve both learning efficiency and the effectiveness of collaborative behaviors. The results indicate that our attention-based approach can be a viable approach for improving the efficiency of MARL training process, integrating domain-specific knowledge at the action level.

This paper presents a novel approach to processing multimodal data for dynamic emotion recognition, named as the Multimodal Masked Autoencoder for Dynamic Emotion Recognition (MultiMAE-DER). The MultiMAE-DER leverages the closely correlated representation information within spatiotemporal sequences across visual and audio modalities. By utilizing a pre-trained masked autoencoder model, the MultiMAEDER is accomplished through simple, straightforward finetuning. The performance of the MultiMAE-DER is enhanced by optimizing six fusion strategies for multimodal input sequences. These strategies address dynamic feature correlations within cross-domain data across spatial, temporal, and spatiotemporal sequences. In comparison to state-of-the-art multimodal supervised learning models for dynamic emotion recognition, MultiMAE-DER enhances the weighted average recall (WAR) by 4.41% on the RAVDESS dataset and by 2.06% on the CREMAD. Furthermore, when compared with the state-of-the-art model of multimodal self-supervised learning, MultiMAE-DER achieves a 1.86% higher WAR on the IEMOCAP dataset.

This paper proposes a novel Self-Supervised Intrusion Detection (SSID) framework, which enables a fully online Deep Learning (DL) based Intrusion Detection System (IDS) that requires no human intervention or prior off-line learning. The proposed framework analyzes and labels incoming traffic packets based only on the decisions of the IDS itself using an Auto-Associative Deep Random Neural Network, and on an online estimate of its statistically measured trustworthiness. The SSID framework enables IDS to adapt rapidly to time-varying characteristics of the network traffic, and eliminates the need for offline data collection. This approach avoids human errors in data labeling, and human labor and computational costs of model training and data collection. The approach is experimentally evaluated on public datasets and compared with well-known {machine learning and deep learning} models, showing that this SSID framework is very useful and advantageous as an accurate and online learning DL-based IDS for IoT systems.

This paper presents a new tool learning dataset Seal-Tools, which contains self-instruct API-like tools. Seal-Tools not only offers a large number of tools, but also includes instances which demonstrate the practical application of tools. Seeking to generate data on a large scale while ensuring reliability, we propose a self-instruct method to generate tools and instances, allowing precise control over the process. Moreover, our Seal-Tools contains hard instances that call multiple tools to complete the job, among which some are nested tool callings. For precise and comprehensive evaluation, we use strict format control and design three metrics from different dimensions. Therefore, Seal-Tools can serve as a new benchmark to evaluate the tool-calling ability of LLMs. Finally, we evaluate several prevalent LLMs and our finetuned model on Seal-Tools. The results show that current systems are far from perfect. The code, data and experiment results are available at //github.com/fairyshine/Seal-Tools .

Recently, several methods have been proposed to augment large Vision Language Models (VLMs) for Visual Question Answering (VQA) simplicity by incorporating external knowledge from knowledge bases or visual clues derived from question decomposition. Although having achieved promising results, these methods still suffer from the challenge that VLMs cannot inherently understand the incorporated knowledge and might fail to generate the optimal answers. Contrarily, human cognition engages visual questions through a top-down reasoning process, systematically exploring relevant issues to derive a comprehensive answer. This not only facilitates an accurate answer but also provides a transparent rationale for the decision-making pathway. Motivated by this cognitive mechanism, we introduce a novel, explainable multi-agent collaboration framework designed to imitate human-like top-down reasoning by leveraging the expansive knowledge of Large Language Models (LLMs). Our framework comprises three agents, i.e., Responder, Seeker, and Integrator, each contributing uniquely to the top-down reasoning process. The VLM-based Responder generates the answer candidates for the question and gives responses to other issues. The Seeker, primarily based on LLM, identifies relevant issues related to the question to inform the Responder and constructs a Multi-View Knowledge Base (MVKB) for the given visual scene by leveraging the understanding capabilities of LLM. The Integrator agent combines information from the Seeker and the Responder to produce the final VQA answer. Through this collaboration mechanism, our framework explicitly constructs an MVKB for a specific visual scene and reasons answers in a top-down reasoning process. Extensive and comprehensive evaluations on diverse VQA datasets and VLMs demonstrate the superior applicability and interpretability of our framework over the existing compared methods.

This paper explores the possibilities of the current generation of Large Language Models for incorporating Machine Learning Operations (MLOps) functionalities into ML training code bases. We evaluate the performance of OpenAI (gpt-3.5-turbo) and WizardCoder (open-source, 15B parameters) models on the automated accomplishment of various MLOps functionalities in different settings. We perform a benchmarking study that assesses the ability of these models to: (1) adapt existing code samples (Inlining) with component-specific MLOps functionality such as MLflow and Weights & Biases for experiment tracking, Optuna for hyperparameter optimization etc., and (2) perform the task of Translation from one component of an MLOps functionality to another, e.g., translating existing GitPython library based version control code to Data Version Control library based. We also propose three different approaches that involve teaching LLMs to comprehend the API documentation of the components as a reference while accomplishing the Translation tasks. In our evaluations, the gpt-3.5-turbo model significantly outperforms WizardCoder by achieving impressive Pass@3 accuracy in model optimization (55% compared to 0% by WizardCoder), experiment tracking (100%, compared to 62.5% by WizardCoder), model registration (92% compared to 42% by WizardCoder) and hyperparameter optimization (83% compared to 58% by WizardCoder) on average, in their best possible settings, showcasing its superior code adaptability performance in complex MLOps tasks.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司