亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Relying on sheaf theory, we introduce the notions of projected barcodes and projected distances for multi-parameter persistence modules. Projected barcodes are defined as derived pushforward of persistence modules onto $\mathbb{R}$. Projected distances come in two flavors: the integral sheaf metrics (ISM) and the sliced convolution distances (SCD). We conduct a systematic study of the stability of projected barcodes and show that the fibered barcode is a particular instance of projected barcodes. We prove that the ISM and the SCD provide lower bounds for the convolution distance. Furthermore, we show that the $\gamma$-linear ISM and the $\gamma$-linear SCD which are projected distances tailored for $\gamma$-sheaves can be computed using TDA software dedicated to one-parameter persistence modules. Moreover, the time and memory complexity required to compute these two metrics are advantageous since our approach does not require computing nor storing an entire $n$-persistence module.

相關內容

Despite the remarkable progress in deep generative models, synthesizing high-resolution and temporally coherent videos still remains a challenge due to their high-dimensionality and complex temporal dynamics along with large spatial variations. Recent works on diffusion models have shown their potential to solve this challenge, yet they suffer from severe computation- and memory-inefficiency that limit the scalability. To handle this issue, we propose a novel generative model for videos, coined projected latent video diffusion models (PVDM), a probabilistic diffusion model which learns a video distribution in a low-dimensional latent space and thus can be efficiently trained with high-resolution videos under limited resources. Specifically, PVDM is composed of two components: (a) an autoencoder that projects a given video as 2D-shaped latent vectors that factorize the complex cubic structure of video pixels and (b) a diffusion model architecture specialized for our new factorized latent space and the training/sampling procedure to synthesize videos of arbitrary length with a single model. Experiments on popular video generation datasets demonstrate the superiority of PVDM compared with previous video synthesis methods; e.g., PVDM obtains the FVD score of 639.7 on the UCF-101 long video (128 frames) generation benchmark, which improves 1773.4 of the prior state-of-the-art.

We present a simple and efficient acceleration technique for an arbitrary method for computing the Euclidean projection of a point onto a convex polytope, defined as the convex hull of a finite number of points, in the case when the number of points in the polytope is much greater than the dimension of the space. The technique consists in applying any given method to a "small" subpolytope of the original polytope and gradually shifting it, till the projection of the given point onto the subpolytope coincides with its projection onto the original polytope. The results of numerical experiments demonstrate the high efficiency of the proposed acceleration technique. In particular, they show that the reduction of computation time increases with an increase of the number of points in the polytope and is proportional to this number for some methods. In the second part of the paper, we also discuss a straightforward extension of the proposed acceleration technique to the case of arbitrary methods for computing the distance between two convex polytopes, defined as the convex hulls of finite sets of points.

A significant portion of driving hazards is caused by human error and disregard for local driving regulations; Consequently, an intelligent assistance system can be beneficial. This paper proposes a novel vision-based modular package to ensure drivers' safety by perceiving the environment. Each module is designed based on accuracy and inference time to deliver real-time performance. As a result, the proposed system can be implemented on a wide range of vehicles with minimum hardware requirements. Our modular package comprises four main sections: lane detection, object detection, segmentation, and monocular depth estimation. Each section is accompanied by novel techniques to improve the accuracy of others along with the entire system. Furthermore, a GUI is developed to display perceived information to the driver. In addition to using public datasets, like BDD100K, we have also collected and annotated a local dataset that we utilize to fine-tune and evaluate our system. We show that the accuracy of our system is above 80% in all the sections. Our code and data are available at //github.com/Pandas-Team/Autonomous-Vehicle-Environment-Perception

Many streaming algorithms provide only a high-probability relative approximation. These two relaxations, of allowing approximation and randomization, seem necessary -- for many streaming problems, both relaxations must be employed simultaneously, to avoid an exponentially larger (and often trivial) space complexity. A common drawback of these randomized approximate algorithms is that independent executions on the same input have different outputs, that depend on their random coins. Pseudo-deterministic algorithms combat this issue, and for every input, they output with high probability the same ``canonical'' solution. We consider perhaps the most basic problem in data streams, of counting the number of items in a stream of length at most $n$. Morris's counter [CACM, 1978] is a randomized approximation algorithm for this problem that uses $O(\log\log n)$ bits of space, for every fixed approximation factor (greater than $1$). Goldwasser, Grossman, Mohanty and Woodruff [ITCS 2020] asked whether pseudo-deterministic approximation algorithms can match this space complexity. Our main result answers their question negatively, and shows that such algorithms must use $\Omega(\sqrt{\log n / \log\log n})$ bits of space. Our approach is based on a problem that we call Shift Finding, and may be of independent interest. In this problem, one has query access to a shifted version of a known string $F\in\{0,1\}^{3n}$, which is guaranteed to start with $n$ zeros and end with $n$ ones, and the goal is to find the unknown shift using a small number of queries. We provide for this problem an algorithm that uses $O(\sqrt{n})$ queries. It remains open whether $poly(\log n)$ queries suffice; if true, then our techniques immediately imply a nearly-tight $\Omega(\log n/\log\log n)$ space bound for pseudo-deterministic approximate counting.

In this paper, we study the well-known "Heavy Ball" method for convex and nonconvex optimization introduced by Polyak in 1964, and establish its convergence under a variety of situations. Traditionally, most algorthms use "full-coordinate update," that is, at each step, very component of the argument is updated. However, when the dimension of the argument is very high, it is more efficient to update some but not all components of the argument at each iteration. We refer to this as "batch updating" in this paper. When gradient-based algorithms are used together with batch updating, in principle it is sufficient to compute only those components of the gradient for which the argument is to be updated. However, if a method such as back propagation is used to compute these components, computing only some components of gradient does not offer much savings over computing the entire gradient. Therefore, to achieve a noticeable reduction in CPU usage at each step, one can use first-order differences to approximate the gradient. The resulting estimates are biased, and also have unbounded variance. Thus some delicate analysis is required to ensure that the HB algorithm converge when batch updating is used instead of full-coordinate updating, and/or approximate gradients are used instead of true gradients. In this paper, we not only establish the almost sure convergence of the iterations to the stationary point(s) of the objective function, but also derive upper bounds on the rate of convergence. To the best of our knowledge, there is no other paper that combines all of these features.

In this paper, an efficient ensemble domain decomposition algorithm is proposed for fast solving the fully-mixed random Stokes-Darcy model with the physically realistic Beavers-Joseph (BJ) interface conditions. We utilize the Monte Carlo method for the coupled model with random inputs to derive some deterministic Stokes-Darcy numerical models and use the idea of the ensemble to realize the fast computation of multiple problems. One remarkable feature of the algorithm is that multiple linear systems share a common coefficient matrix in each deterministic numerical model, which significantly reduces the computational cost and achieves comparable accuracy with the traditional methods. Moreover, by domain decomposition, we can decouple the Stokes-Darcy system into two smaller sub-physics problems naturally. Both mesh-dependent and mesh-independent convergence rates of the algorithm are rigorously derived by choosing suitable Robin parameters. Optimized Robin parameters are derived and analyzed to accelerate the convergence of the proposed algorithm. Especially, for small hydraulic conductivity in practice, the almost optimal geometric convergence can be obtained by finite element discretization. Finally, two groups of numerical experiments are conducted to validate and illustrate the exclusive features of the proposed algorithm.

Deductive verification of hybrid systems (HSs) increasingly attracts more attention in recent years because of its power and scalability, where a powerful specification logic for HSs is the cornerstone. Often, HSs are naturally modelled by concurrent processes that communicate with each other. However, existing specification logics cannot easily handle such models. In this paper, we present a specification logic and proof system for Hybrid Communicating Sequential Processes (HCSP), that extends CSP with ordinary differential equations (ODE) and interrupts to model interactions between continuous and discrete evolution. Because it includes a rich set of algebraic operators, complicated hybrid systems can be easily modelled in an algebra-like compositional way in HCSP. Our logic can be seen as a generalization and simplification of existing hybrid Hoare logics (HHL) based on duration calculus (DC), as well as a conservative extension of existing Hoare logics for concurrent programs. Its assertion logic is the first-order theory of differential equations (FOD), together with assertions about traces recording communications, readiness, and continuous evolution. We prove continuous relative completeness of the logic w.r.t. FOD, as well as discrete relative completeness in the sense that continuous behaviour can be arbitrarily approximated by discretization. Besides, we discuss how to simplify proofs using the logic by providing a simplified assertion language and a set of sound and complete rules for differential invariants for ODEs. Finally, we implement a proof assistant for the logic in Isabelle/HOL, and apply it to verify two case studies to illustrate the power and scalability of our logic.

We study a fundamental model of online preference aggregation, where an algorithm maintains an ordered list of $n$ elements. An input is a stream of preferred sets $R_1, R_2, \dots, R_t, \dots$. Upon seeing $R_t$ and without knowledge of any future sets, an algorithm has to rerank elements (change the list ordering), so that at least one element of $R_t$ is found near the list front. The incurred cost is a sum of the list update costs (the number of swaps of neighboring list elements) and access costs (position of the first element of $R_t$ on the list). This scenario occurs naturally in applications such as ordering items in an online shop using aggregated preferences of shop customers. The theoretical underpinning of this problem is known as Min-Sum Set Cover. Unlike previous work (Fotakis et al., ICALP 2020, NIPS 2020) that mostly studied the performance of an online algorithm ALG against the static optimal solution (a single optimal list ordering), in this paper, we study an arguably harder variant where the benchmark is the provably stronger optimal dynamic solution OPT (that may also modify the list ordering). In terms of an online shop, this means that the aggregated preferences of its user base evolve with time. We construct a computationally efficient randomized algorithm whose competitive ratio (ALG-to-OPT cost ratio) is $O(r^2)$ and prove the existence of a deterministic $O(r^4)$-competitive algorithm. Here, $r$ is the maximum cardinality of sets $R_t$. This is the first algorithm whose ratio does not depend on $n$: the previously best algorithm for this problem was $O(r^{3/2} \cdot \sqrt{n})$-competitive and $\Omega(r)$ is a lower bound on the performance of any deterministic online algorithm.

Symbol-pair codes were proposed for the application in high density storage systems, where it is not possible to read individual symbols. Yaakobi, Bruck and Siegel proved that the minimum pair-distance of binary linear cyclic codes satisfies $d_2 \geq \lceil 3d_H/2 \rceil$ and introduced $b$-symbol metric codes in 2016. In this paper covering codes in $b$-symbol metrics are considered. Some examples are given to show that the Delsarte bound and the Norse bound for covering codes in the Hamming metric are not true for covering codes in the pair metric. We give the redundancy bound on covering radius of linear codes in the $b$-symbol metric and give some optimal codes attaining this bound. Then we prove that there is no perfect linear symbol-pair code with the minimum pair distance $7$ and there is no perfect $b$-symbol metric code if $b\geq \frac{n+1}{2}$. Moreover a lot of cyclic and algebraic-geometric codes are proved non-perfect in the $b$-symbol metric. The covering radius of the Reed-Solomon code in the $b$-symbol metric is determined. As an application the generalized Singleton bound on the sizes of list-decodable $b$-symbol metric codes is also presented. Then an upper bound on lengths of general MDS symbol-pair codes is proved.

The solution of the governing equation representing the drawdown in a horizontal confined aquifer, where groundwater flow is unsteady, is provided in terms of the exponential integral, which is famously known as the Well function. For the computation of this function in practical applications, it is important to develop not only accurate but also a simple approximation that requires evaluation of the fewest possible terms. To that end, introducing Ramanujan's series expression, this work proposes a full-range approximation to the exponential integral using Ramanujan's series for the small argument (u \leq 1) and an approximation based on the bound of the integral for the other range (u \in (1,100]). The evaluation of the proposed approximation results in the most accurate formulae compared to the existing studies, which possess the maximum percentage error of 0.05\%. Further, the proposed formula is much simpler to apply as it contains just the product of exponential and logarithm functions. To further check the efficiency of the proposed approximation, we consider a practical example for evaluating the discrete pumping kernel, which shows the superiority of this approximation over the others. Finally, the authors hope that the proposed efficient approximation can be useful for groundwater and hydrogeological applications.

北京阿比特科技有限公司