亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents an agent-based model of mobility choice, influenced by human factors such as habits and perception biases. It is implemented in a Netlogo simulator, calibrated from results of an online survey about perceptions of mobility. The simulator can be played online. It allows to modify urban infrastructure and observe modal report.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 線性的 · SimPLe · 樣例 · 示例 ·
2024 年 7 月 15 日

To solve many problems on graphs, graph traversals are used, the usual variants of which are the depth-first search and the breadth-first search. Implementing a graph traversal we consequently reach all vertices of the graph that belong to a connected component. The breadth-first search is the usual choice when constructing efficient algorithms for finding connected components of a graph. Methods of simple iteration for solving systems of linear equations with modified graph adjacency matrices and with the properly specified right-hand side can be considered as graph traversal algorithms. These traversal algorithms, generally speaking, turn out to be non-equivalent neither to the depth-first search nor the breadth-first search. The example of such a traversal algorithm is the one associated with the Gauss-Seidel method. For an arbitrary connected graph, to visit all its vertices, the algorithm requires not more iterations than that is required for BFS. For a large number of instances of the problem, fewer iterations will be required.

Robust optimisation is a well-established framework for optimising functions in the presence of uncertainty. The inherent goal of this problem is to identify a collection of inputs whose outputs are both desirable for the decision maker, whilst also being robust to the underlying uncertainties in the problem. In this work, we study the multi-objective case of this problem. We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation. Robustification refers to the strategy that is used to account for the uncertainty in the problem. Scalarisation refers to the procedure that is used to encode the relative importance of each objective to a scalar-valued reward. As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions that are identified and the final decisions that are made. The purpose of this work is to give a thorough exposition on the effects of these different orderings and in particular highlight when one should opt for one ordering over the other. As part of our analysis, we showcase how many existing risk concepts can be integrated into the specification and solution of a robust multi-objective optimisation problem. Besides this, we also demonstrate how one can principally define the notion of a robust Pareto front and a robust performance metric based on our ``robustify and scalarise'' methodology. To illustrate the efficacy of these new ideas, we present two insightful case studies which are based on real-world data sets.

We develop a nonparametric test for deciding whether volatility of an asset follows a standard semimartingale process, with paths of finite quadratic variation, or a rough process with paths of infinite quadratic variation. The test utilizes the fact that volatility is rough if and only if volatility increments are negatively autocorrelated at high frequencies. It is based on the sample autocovariance of increments of spot volatility estimates computed from high-frequency asset return data. By showing a feasible CLT for this statistic under the null hypothesis of semimartingale volatility paths, we construct a test with fixed asymptotic size and an asymptotic power equal to one. The test is derived under very general conditions for the data-generating process. In particular, it is robust to jumps with arbitrary activity and to the presence of market microstructure noise. In an application of the test to SPY high-frequency data, we find evidence for rough volatility.

Deep learning models can exhibit what appears to be a sudden ability to solve a new problem as training time, training data, or model size increases, a phenomenon known as emergence. In this paper, we present a framework where each new ability (a skill) is represented as a basis function. We solve a simple multi-linear model in this skill-basis, finding analytic expressions for the emergence of new skills, as well as for scaling laws of the loss with training time, data size, model size, and optimal compute ($C$). We compare our detailed calculations to direct simulations of a two-layer neural network trained on multitask sparse parity, where the tasks in the dataset are distributed according to a power-law. Our simple model captures, using a single fit parameter, the sigmoidal emergence of multiple new skills as training time, data size or model size increases in the neural network.

This work explores the representation of univariate and multivariate functions as matrix product states (MPS), also known as quantized tensor-trains (QTT). It proposes an algorithm that employs iterative Chebyshev expansions and Clenshaw evaluations to represent analytic and highly differentiable functions as MPS Chebyshev interpolants. It demonstrates rapid convergence for highly-differentiable functions, aligning with theoretical predictions, and generalizes efficiently to multidimensional scenarios. The performance of the algorithm is compared with that of tensor cross-interpolation (TCI) and multiscale interpolative constructions through a comprehensive comparative study. When function evaluation is inexpensive or when the function is not analytical, TCI is generally more efficient for function loading. However, the proposed method shows competitive performance, outperforming TCI in certain multivariate scenarios. Moreover, it shows advantageous scaling rates and generalizes to a wider range of tasks by providing a framework for function composition in MPS, which is useful for non-linear problems and many-body statistical physics.

We describe a framework that can integrate prior physical information, e.g., the presence of kinematic constraints, to support data-driven simulation in multi-body dynamics. Unlike other approaches, e.g., Fully-connected Neural Network (FCNN) or Recurrent Neural Network (RNN)-based methods that are used to model the system states directly, the proposed approach embraces a Neural Ordinary Differential Equation (NODE) paradigm that models the derivatives of the system states. A central part of the proposed methodology is its capacity to learn the multibody system dynamics from prior physical knowledge and constraints combined with data inputs. This learning process is facilitated by a constrained optimization approach, which ensures that physical laws and system constraints are accounted for in the simulation process. The models, data, and code for this work are publicly available as open source at //github.com/uwsbel/sbel-reproducibility/tree/master/2024/MNODE-code.

The homogenization procedure developed here is conducted on a laminate with periodic space-time modulation on the fine scale: at leading order, this modulation creates convection in the low-wavelength regime if both parameters are modulated. However, if only one parameter is modulated, which is more realistic, this convective term disappears and one recovers a standard diffusion equation with effective homogeneous parameters; this does not describe the non-reciprocity and the propagation of the field observed from exact dispersion diagrams. This inconsistency is corrected here by considering second-order homogenization which results in a non-reciprocal propagation term that is proved to be non-zero for any laminate and verified via numerical simulation. The same methodology is also applied to the case when the density is modulated in the heat equation, leading therefore to a corrective advective term which cancels out non-reciprocity at the leading order but not at the second order.

This paper presents a fitted space-time finite element method for solving a parabolic advection-diffusion problem with a nonstationary interface. The jumping diffusion coefficient gives rise to the discontinuity of the spatial gradient of solution across the interface. We use the Banach-Necas-Babuska theorem to show the well-posedness of the continuous variational problem. A fully discrete finite-element based scheme is analyzed using the Galerkin method and unstructured fitted meshes. An optimal error estimate is established in a discrete energy norm under appropriate globally low but locally high regularity conditions. Some numerical results corroborate our theoretical results.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司