In this paper we provide an algorithm for maintaining a $(1-\epsilon)$-approximate maximum flow in a dynamic, capacitated graph undergoing edge additions. Over a sequence of $m$-additions to an $n$-node graph where every edge has capacity $O(\mathrm{poly}(m))$ our algorithm runs in time $\widehat{O}(m \sqrt{n} \cdot \epsilon^{-1})$. To obtain this result we design dynamic data structures for the more general problem of detecting when the value of the minimum cost circulation in a dynamic graph undergoing edge additions obtains value at most $F$ (exactly) for a given threshold $F$. Over a sequence $m$-additions to an $n$-node graph where every edge has capacity $O(\mathrm{poly}(m))$ and cost $O(\mathrm{poly}(m))$ we solve this thresholded minimum cost flow problem in $\widehat{O}(m \sqrt{n})$. Both of our algorithms succeed with high probability against an adaptive adversary. We obtain these results by dynamizing the recent interior point method used to obtain an almost linear time algorithm for minimum cost flow (Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva 2022), and introducing a new dynamic data structure for maintaining minimum ratio cycles in an undirected graph that succeeds with high probability against adaptive adversaries.
In this paper, we present efficient distributed algorithms for classical symmetry breaking problems, maximal independent sets (MIS) and ruling sets, in power graphs. We work in the standard CONGEST model of distributed message passing, where the communication network is abstracted as a graph $G$. Typically, the problem instance in CONGEST is identical to the communication network $G$, that is, we perform the symmetry breaking in $G$. In this work, we consider a setting where the problem instance corresponds to a power graph $G^k$, where each node of the communication network $G$ is connected to all of its $k$-hop neighbors. Our main contribution is a deterministic polylogarithmic time algorithm for computing $k$-ruling sets of $G^k$, which (for $k>1$) improves exponentially on the current state-of-the-art runtimes. The main technical ingredient for this result is a deterministic sparsification procedure which may be of independent interest. On top of being a natural family of problems, ruling sets (in power graphs) are well-motivated through their applications in the powerful shattering framework [BEPS JACM'16, Ghaffari SODA'19] (and others). We present randomized algorithms for computing maximal independent sets and ruling sets of $G^k$ in essentially the same time as they can be computed in $G$. We also revisit the shattering algorithm for MIS [BEPS JACM'16] and present different approaches for the post-shattering phase. Our solutions are algorithmically and analytically simpler (also in the LOCAL model) than existing solutions and obtain the same runtime as [Ghaffari SODA'16].
For many computational problems involving randomness, intricate geometric features of the solution space have been used to rigorously rule out powerful classes of algorithms. This is often accomplished through the lens of the multi Overlap Gap Property ($m$-OGP), a rigorous barrier against algorithms exhibiting input stability. In this paper, we focus on the algorithmic tractability of two models: (i) discrepancy minimization, and (ii) the symmetric binary perceptron (\texttt{SBP}), a random constraint satisfaction problem as well as a toy model of a single-layer neural network. Our first focus is on the limits of online algorithms. By establishing and leveraging a novel geometrical barrier, we obtain sharp hardness guarantees against online algorithms for both the \texttt{SBP} and discrepancy minimization. Our results match the best known algorithmic guarantees, up to constant factors. Our second focus is on efficiently finding a constant discrepancy solution, given a random matrix $\mathcal{M}\in\mathbb{R}^{M\times n}$. In a smooth setting, where the entries of $\mathcal{M}$ are i.i.d. standard normal, we establish the presence of $m$-OGP for $n=\Theta(M\log M)$. Consequently, we rule out the class of stable algorithms at this value. These results give the first rigorous evidence towards a conjecture of Altschuler and Niles-Weed~\cite[Conjecture~1]{altschuler2021discrepancy}. Our methods use the intricate geometry of the solution space to prove tight hardness results for online algorithms. The barrier we establish is a novel variant of the $m$-OGP. Furthermore, it regards $m$-tuples of solutions with respect to correlated instances, with growing values of $m$, $m=\omega(1)$. Importantly, our results rule out online algorithms succeeding even with an exponentially small probability.
We explore efficient estimation of statistical quantities, particularly rare event probabilities, for stochastic reaction networks. Consequently, we propose an importance sampling (IS) approach to improve the Monte Carlo (MC) estimator efficiency based on an approximate tau-leap scheme. The crucial step in the IS framework is choosing an appropriate change of probability measure to achieve substantial variance reduction. This task is typically challenging and often requires insights into the underlying problem. Therefore, we propose an automated approach to obtain a highly efficient path-dependent measure change based on an original connection in the stochastic reaction network context between finding optimal IS parameters within a class of probability measures and a stochastic optimal control formulation. Optimal IS parameters are obtained by solving a variance minimization problem. First, we derive an associated dynamic programming equation. Analytically solving this backward equation is challenging, hence we propose an approximate dynamic programming formulation to find near-optimal control parameters. To mitigate the curse of dimensionality, we propose a learning-based method to approximate the value function using a neural network, where the parameters are determined via a stochastic optimization algorithm. Our analysis and numerical experiments verify that the proposed learning-based IS approach substantially reduces MC estimator variance, resulting in a lower computational complexity in the rare event regime, compared with standard tau-leap MC estimators.
This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form $f+h$ where $h$ is a proper closed convex function, $f$ is a differentiable function on the domain of $h$, and $\nabla f$ is Lipschitz continuous on the domain of $h$. The main advantage of this method is that it is "parameter-free" in the sense that it does not require knowledge of the Lipschitz constant of $\nabla f$ or of any global topological properties of $f$. It is shown that the proposed method can obtain an $\varepsilon$-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over $\varepsilon$, in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized parameter-free methods. Finally, numerical experiments are presented to support the practical viability of the method.
In the Internet-of-Things (IoT), massive sensitive and confidential information is transmitted wirelessly, making security a serious concern. This is particularly true when technologies, such as non-orthogonal multiple access (NOMA), are used, making it possible for users to access each other's data. This paper studies secure communications in multiuser NOMA downlink systems, where each user is potentially an eavesdropper. Resource allocation is formulated to achieve the maximum sum secrecy rate, meanwhile satisfying the users' data requirements and power constraint. We solve this non-trivial, mixed-integer non-linear programming problem by decomposing it into power allocation with a closed-form solution, and user pairing obtained effectively using linear programming relaxation and barrier algorithm. These subproblems are solved iteratively until convergence, with the convergence rate rigorously analyzed. Simulations demonstrate that our approach outperforms its existing alternatives significantly in the sum secrecy rate and computational complexity.
We propose a continuous optimization framework for discovering a latent directed acyclic graph (DAG) from observational data. Our approach optimizes over the polytope of permutation vectors, the so-called Permutahedron, to learn a topological ordering. Edges can be optimized jointly, or learned conditional on the ordering via a non-differentiable subroutine. Compared to existing continuous optimization approaches our formulation has a number of advantages including: 1. validity: optimizes over exact DAGs as opposed to other relaxations optimizing approximate DAGs; 2. modularity: accommodates any edge-optimization procedure, edge structural parameterization, and optimization loss; 3. end-to-end: either alternately iterates between node-ordering and edge-optimization, or optimizes them jointly. We demonstrate, on real-world data problems in protein-signaling and transcriptional network discovery, that our approach lies on the Pareto frontier of two key metrics, the SID and SHD.
$L^1$ based optimization is widely used in image denoising, machine learning and related applications. One of the main features of such approach is that it naturally provide a sparse structure in the numerical solutions. In this paper, we study an $L^1$ based mixed DG method for second-order elliptic equations in the non-divergence form. The elliptic PDE in nondivergence form arises in the linearization of fully nonlinear PDEs. Due to the nature of the equations, classical finite element methods based on variational forms can not be employed directly. In this work, we propose a new optimization scheme coupling the classical DG framework with recently developed $L^1$ optimization technique. Convergence analysis in both energy norm and $L^{\infty}$ norm are obtained under weak regularity assumption. Such $L^1$ models are nondifferentiable and therefore invalidate traditional gradient methods. Therefore all existing gradient based solvers are no longer feasible under this setting. To overcome this difficulty, we characterize solutions of $L^1$ optimization as fixed-points of proximity equations and utilize matrix splitting technique to obtain a class of fixed-point proximity algorithms with convergence analysis. Various numerical examples are displayed to illustrate the numerical solution has sparse structure with careful choice of the bases of the finite dimensional spaces. Numerical examples in both smooth and nonsmooth settings are provided to validate the theoretical results.
In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.
Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different inputs, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed systematically. Finally, we discuss the open problems in this field together with interesting future research directions.
Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.