亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study examines the efficacy of various neural network (NN) models in interpreting mental constructs via electroencephalogram (EEG) signals. Through the assessment of 16 prevalent NN models and their variants across four brain-computer interface (BCI) paradigms, we gauged their information representation capability. Rooted in comprehensive literature review findings, we proposed EEGNeX, a novel, purely ConvNet-based architecture. We pitted it against both existing cutting-edge strategies and the Mother of All BCI Benchmarks (MOABB) involving 11 distinct EEG motor imagination (MI) classification tasks and revealed that EEGNeX surpasses other state-of-the-art methods. Notably, it shows up to 2.1%-8.5% improvement in the classification accuracy in different scenarios with statistical significance (p < 0.05) compared to its competitors. This study not only provides deeper insights into designing efficient NN models for EEG data but also lays groundwork for future explorations into the relationship between bioelectric brain signals and NN architectures. For the benefit of broader scientific collaboration, we have made all benchmark models, including EEGNeX, publicly available at (//github.com/chenxiachan/EEGNeX).

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MLOps · Engineering · Learning · GitHub ·
2023 年 10 月 29 日

The rising popularity of deep learning (DL) methods and techniques has invigorated interest in the topic of SE4DL, the application of software engineering (SE) practices on deep learning software. Despite the novel engineering challenges brought on by the data-driven and non-deterministic paradigm of DL software, little work has been invested into developing AI-targeted SE tools. On the other hand, tools tackling more general engineering issues in DL are actively used and referred to under the umbrella term of ``MLOps tools''. Furthermore, the available literature supports the utility of conventional SE tooling in DL software development. Building upon previous MSR research on tool usage in open-source software works, we identify conventional and MLOps tools adopted in popular applied DL projects that use Python as the main programming language. About 70% of the GitHub repositories mined contained at least one conventional SE tool. Software configuration management tools are the most adopted, while the opposite applies to maintenance tools. Substantially fewer MLOps tools were in use, with only 9 tools out of a sample of 80 used in at least one repository. The majority of them were open-source rather than proprietary. One of these tools, TensorBoard, was found to be adopted in about half of the repositories in our study. Consequently, the use of conventional SE tooling demonstrates its relevance to DL software. Further research is recommended on the adoption of MLOps tooling by open-source projects, focusing on the relevance of particular tool types, the development of required tools, as well as ways to promote the use of already available tools.

For multi-scale problems, the conventional physics-informed neural networks (PINNs) face some challenges in obtaining available predictions. In this paper, based on PINNs, we propose a practical deep learning framework for multi-scale problems by reconstructing the loss function and associating it with special neural network architectures. New PINN methods derived from the improved PINN framework differ from the conventional PINN method mainly in two aspects. First, the new methods use a novel loss function by modifying the standard loss function through a (grouping) regularization strategy. The regularization strategy implements a different power operation on each loss term so that all loss terms composing the loss function are of approximately the same order of magnitude, which makes all loss terms be optimized synchronously during the optimization process. Second, for the multi-frequency or high-frequency problems, in addition to using the modified loss function, new methods upgrade the neural network architecture from the common fully-connected neural network to special network architectures such as the Fourier feature architecture, and the integrated architecture developed by us. The combination of the above two techniques leads to a significant improvement in the computational accuracy of multi-scale problems. Several challenging numerical examples demonstrate the effectiveness of the proposed methods. The proposed methods not only significantly outperform the conventional PINN method in terms of computational efficiency and computational accuracy, but also compare favorably with the state-of-the-art methods in the recent literature. The improved PINN framework facilitates better application of PINNs to multi-scale problems.

We introduce JAX FDM, a differentiable solver to design mechanically efficient shapes for 3D structures conditioned on target architectural, fabrication and structural properties. Examples of such structures are domes, cable nets and towers. JAX FDM solves these inverse form-finding problems by combining the force density method, differentiable sparsity and gradient-based optimization. Our solver can be paired with other libraries in the JAX ecosystem to facilitate the integration of form-finding simulations with neural networks. We showcase the features of JAX FDM with two design examples. JAX FDM is available as an open-source library at //github.com/arpastrana/jax_fdm.

The joint analysis of multimodal neuroimaging data is critical in the field of brain research because it reveals complex interactive relationships between neurobiological structures and functions. In this study, we focus on investigating the effects of structural imaging (SI) features, including white matter micro-structure integrity (WMMI) and cortical thickness, on the whole brain functional connectome (FC) network. To achieve this goal, we propose a network-based vector-on-matrix regression model to characterize the FC-SI association patterns. We have developed a novel multi-level dense bipartite and clique subgraph extraction method to identify which subsets of spatially specific SI features intensively influence organized FC sub-networks. The proposed method can simultaneously identify highly correlated structural-connectomic association patterns and suppress false positive findings while handling millions of potential interactions. We apply our method to a multimodal neuroimaging dataset of 4,242 participants from the UK Biobank to evaluate the effects of whole-brain WMMI and cortical thickness on the resting-state FC. The results reveal that the WMMI on corticospinal tracts and inferior cerebellar peduncle significantly affect functional connections of sensorimotor, salience, and executive sub-networks with an average correlation of 0.81 (p<0.001).

Self-supervised models have had great success in learning speech representations that can generalize to various downstream tasks. However, most self-supervised models require a large amount of compute and multiple GPUs to train, significantly hampering the development of self-supervised learning. In an attempt to reduce the computation of training, we revisit the training of HuBERT, a highly successful self-supervised model. We improve and simplify several key components, including the loss function, input representation, and training in multiple stages. Our model, MelHuBERT, is able to achieve favorable performance on phone recognition, speaker identification, and automatic speech recognition against HuBERT, while saving 31.2% of the pre-training time, or equivalently 33.5% MACs per one second speech. The code and pre-trained models are available in //github.com/nervjack2/MelHuBERT.

The processing and analysis of computed tomography (CT) imaging is important for both basic scientific development and clinical applications. In AutoCT, we provide a comprehensive pipeline that integrates an end-to-end automatic preprocessing, registration, segmentation, and quantitative analysis of 3D CT scans. The engineered pipeline enables atlas-based CT segmentation and quantification leveraging diffeomorphic transformations through efficient forward and inverse mappings. The extracted localized features from the deformation field allow for downstream statistical learning that may facilitate medical diagnostics. On a lightweight and portable software platform, AutoCT provides a new toolkit for the CT imaging community to underpin the deployment of artificial intelligence-driven applications.

We study parallel fault-tolerant quantum computing for families of homological quantum low-density parity-check (LDPC) codes defined on 3-manifolds with constant or almost-constant encoding rate. We derive generic formula for a transversal $T$ gate of color codes on general 3-manifolds, which acts as collective non-Clifford logical CCZ gates on any triplet of logical qubits with their logical-$X$ membranes having a $\mathbb{Z}_2$ triple intersection at a single point. The triple intersection number is a topological invariant, which also arises in the path integral of the emergent higher symmetry operator in a topological quantum field theory: the $\mathbb{Z}_2^3$ gauge theory. Moreover, the transversal $S$ gate of the color code corresponds to a higher-form symmetry supported on a codimension-1 submanifold, giving rise to exponentially many addressable and parallelizable logical CZ gates. We have developed a generic formalism to compute the triple intersection invariants for 3-manifolds and also study the scaling of the Betti number and systoles with volume for various 3-manifolds, which translates to the encoding rate and distance. We further develop three types of LDPC codes supporting such logical gates: (1) A quasi-hyperbolic code from the product of 2D hyperbolic surface and a circle, with almost-constant rate $k/n=O(1/\log(n))$ and $O(\log(n))$ distance; (2) A homological fibre bundle code with $O(1/\log^{\frac{1}{2}}(n))$ rate and $O(\log^{\frac{1}{2}}(n))$ distance; (3) A specific family of 3D hyperbolic codes: the Torelli mapping torus code, constructed from mapping tori of a pseudo-Anosov element in the Torelli subgroup, which has constant rate while the distance scaling is currently unknown. We then show a generic constant-overhead scheme for applying a parallelizable universal gate set with the aid of logical-$X$ measurements.

Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司