亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Treewidth (tw) is an important parameter that, when bounded, yields tractability for many problems. For example, graph problems expressible in Monadic Second Order (MSO) logic and QUANTIFIED SAT or, more generally, QUANTIFIED CSP, are FPT parameterized by the tw of the input's (primal) graph plus the length of the MSO-formula [Courcelle, Information & Computation 1990] and the quantifier rank [Chen, ECAI 2004], resp. The algorithms from these (meta-)results have running times whose dependence on tw is a tower of exponents. A conditional lower bound by Fichte et al. [LICS 2020] shows that, for QUANTIFIED SAT, the height of this tower is equal to the number of quantifier alternations. Lower bounds showing that at least double-exponential factors in the running time are necessary are rare: there are very few (for tw and vertex cover vc parameterizations) and they are for problems that are complete for #NP, $\Sigma_2^p$, $\Pi_2^p$, or higher levels of the polynomial hierarchy. We show, for the first time, that it is not necessary to go higher up in the polynomial hierarchy to obtain such lower bounds. We design a novel, yet simple versatile technique based on Sperner families to obtain such lower bounds and apply it to 3 problems: METRIC DIMENSION, STRONG METRIC DIMENSION, and GEODETIC SET. We prove that they do not admit $2^{2^{o(tw)}} \cdot n^{O(1)}$-time algorithms, even on bounded diameter graphs, unless the ETH fails. For STRONG METRIC DIMENSION, the lower bound holds even for vc. We complement our lower bounds with matching upper bounds.

相關內容

SAT是研究者關注命題可滿足性問題的理論與應用的第一次年度會議。除了簡單命題可滿足性外,它還包括布爾優化(如MaxSAT和偽布爾(PB)約束)、量化布爾公式(QBF)、可滿足性模理論(SMT)和約束規劃(CP),用于與布爾級推理有明確聯系的問題。官網鏈接: · 正則的 · 隨機子空間 · Subspace · 奇異的 ·
2024 年 6 月 26 日

Randomized subspace approximation with "matrix sketching" is an effective approach for constructing approximate partial singular value decompositions (SVDs) of large matrices. The performance of such techniques has been extensively analyzed, and very precise estimates on the distribution of the residual errors have been derived. However, our understanding of the accuracy of the computed singular vectors (measured in terms of the canonical angles between the spaces spanned by the exact and the computed singular vectors, respectively) remains relatively limited. In this work, we present practical bounds and estimates for canonical angles of randomized subspace approximation that can be computed efficiently either a priori or a posteriori, without assuming prior knowledge of the true singular subspaces. Under moderate oversampling in the randomized SVD, our prior probabilistic bounds are asymptotically tight and can be computed efficiently, while bringing a clear insight into the balance between oversampling and power iterations given a fixed budget on the number of matrix-vector multiplications. The numerical experiments demonstrate the empirical effectiveness of these canonical angle bounds and estimates on different matrices under various algorithmic choices for the randomized SVD.

Cross-lingual Cross-modal Retrieval (CCR) is an essential task in web search, which aims to break the barriers between modality and language simultaneously and achieves image-text retrieval in the multi-lingual scenario with a single model. In recent years, excellent progress has been made based on cross-lingual cross-modal pre-training; particularly, the methods based on contrastive learning on large-scale data have significantly improved retrieval tasks. However, these methods directly follow the existing pre-training methods in the cross-lingual or cross-modal domain, leading to two problems of inconsistency in CCR: The methods with cross-lingual style suffer from the intra-modal error propagation, resulting in inconsistent recall performance across languages in the whole dataset. The methods with cross-modal style suffer from the inter-modal optimization direction bias, resulting in inconsistent rank across languages within each instance, which cannot be reflected by Recall@K. To solve these problems, we propose a simple but effective 1-to-K contrastive learning method, which treats each language equally and eliminates error propagation and optimization bias. In addition, we propose a new evaluation metric, Mean Rank Variance (MRV), to reflect the rank inconsistency across languages within each instance. Extensive experiments on four CCR datasets show that our method improves both recall rates and MRV with smaller-scale pre-trained data, achieving the new state-of-art.

We consider the incomplete multi-graph matching problem, which is a generalization of the NP-hard quadratic assignment problem for matching multiple finite sets. Multi-graph matching plays a central role in computer vision, e.g., for matching images or shapes, so that a number of dedicated optimization techniques have been proposed. While the closely related NP-hard multi-dimensional assignment problem (MDAP) has been studied for decades in the operations research community, it only considers complete matchings and has a different cost structure. We bridge this gap and transfer well-known approximation algorithms for the MDAP to incomplete multi-graph matching. To this end, we revisit respective algorithms, adapt them to incomplete multi-graph matching, and propose their extended and parallelized versions. Our experimental validation shows that our new method substantially outperforms the previous state of the art in terms of objective and runtime. Our algorithm matches, for example, 29 images with more than 500 keypoints each in less than two minutes, whereas the fastest considered competitor requires at least half an hour while producing far worse results.

To improve the ability of the large language model (LLMs) to tackle complex reasoning problems, chain-of-thoughts (CoT) methods were proposed to guide LLMs to reason step-by-step, enabling problem solving from simple to complex. State-of-the-art methods for generating such a chain involve interactive collaboration, where the learner generates candidate intermediate thoughts, evaluated by the LLM, guiding the generation of subsequent thoughts. However, a widespread yet understudied problem is that the evaluation from the LLM is typically noisy and unreliable, potentially misleading the generation process in selecting promising intermediate thoughts. In this paper, motivated by Vapnik's principle, we use pairwise-comparison evaluation instead of point-wise scoring to search for promising intermediate thoughts with the noisy feedback from the LLM. In each round, we randomly pair intermediate thoughts and directly prompt the LLM to select the more promising one from each pair, allowing us to identify the most promising thoughts through an iterative process. To further alleviate the noise in the comparison, we incorporate techniques from ensemble learning and dueling bandits, proposing two variants of the algorithm. Experiments on three real-world tasks demonstrate the effectiveness of our proposed algorithm and verify the rationale of the pairwise comparison mechanism.

Recent work on discrete speech tokenization has paved the way for models that can seamlessly perform multiple tasks across modalities, e.g., speech recognition, text to speech, speech to speech translation. Moreover, large language models (LLMs) pretrained from vast text corpora contain rich linguistic information that can improve accuracy in a variety of tasks. In this paper, we present a decoder-only Discrete Multimodal Language Model (DMLM), which can be flexibly applied to multiple tasks (ASR, T2S, S2TT, etc.) and modalities (text, speech, vision). We explore several critical aspects of discrete multi-modal models, including the loss function, weight initialization, mixed training supervision, and codebook. Our results show that DMLM benefits significantly, across multiple tasks and datasets, from a combination of supervised and unsupervised training. Moreover, for ASR, it benefits from initializing DMLM from a pretrained LLM, and from a codebook derived from Whisper activations.

The strong capability of large language models (LLMs) has been applied to information extraction (IE) through either retrieval augmented prompting or instruction tuning (IT). However, the best way to incorporate information with LLMs for IE remains an open question. In this paper, we explore Retrieval Augmented Instruction Tuning (RA-IT) for IE, focusing on the task of open named entity recognition (NER). Specifically, for each training sample, we retrieve semantically similar examples from the training dataset as the context and prepend them to the input of the original instruction. To evaluate our RA-IT approach more thoroughly, we construct a Chinese IT dataset for open NER and evaluate RA-IT in both English and Chinese scenarios. Experimental results verify the effectiveness of RA-IT across various data sizes and in both English and Chinese scenarios. We also conduct thorough studies to explore the impacts of various retrieval strategies in the proposed RA-IT framework. Code and data are available at: //github.com/Emma1066/Retrieval-Augmented-IT-OpenNER

Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, simple instructional prompts suffer from inaccurate responses. Existing works show that more complicated prompting strategies, such as Chain-of-Thoughts and Least-to-Most, can unlock LLM's powerful capacity in diverse areas. Recent researches reveal that simple divide-and-conquer prompting strategy, i.e. simply dividing the input sequence to multiple sub-inputs, can also substantially improve LLM's performance in some specific tasks such as misinformation detection. In this paper, we aim at examining the utility of divide-and-conquer prompting strategy and answer on which kind of tasks this strategy gets advantages. Specifically, we provide a theoretic analysis to divide-and-conquer prompting strategy and help us identify the specific tasks where DaC prompting can bring performance boost with theoretic guarantee. We then present two cases (large integer arithmetic and fact verification) where experimental results aligns with our theoretic analysis.

We propose a novel nonparametric Bayesian approach for meta-analysis with event time outcomes. The model is an extension of linear dependent tail-free processes. The extension includes a modification to facilitate (conditionally) conjugate posterior updating and a hierarchical extension with a random partition of studies. The partition is formalized as a Dirichlet process mixture. The model development is motivated by a meta-analysis of cancer immunotherapy studies. The aim is to validate the use of relevant biomarkers in the design of immunotherapy studies. The hypothesis is about immunotherapy in general, rather than about a specific tumor type, therapy and marker. This broad hypothesis leads to a very diverse set of studies being included in the analysis and gives rise to substantial heterogeneity across studies

Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司