亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Factors contributing to social inequalities are also associated with negative mental health outcomes leading to disparities in mental well-being. We propose a Bayesian hierarchical model which can evaluate the impact of policies on population well-being, accounting for spatial/temporal dependencies. Building on an interrupted time series framework, our approach can evaluate how different profiles of individuals are affected in different ways, whilst accounting for their uncertainty. We apply the framework to assess the impact of the United Kingdoms welfare reform, which took place throughout the 2010s, on mental well-being using data from the UK Household Longitudinal Study. The additional depth of knowledge is essential for effective evaluation of current policy and implementation of future policy.

相關內容

Developing objective methods for assessing the severity of Parkinson's disease (PD) is crucial for improving the diagnosis and treatment. This study proposes two sets of novel features derived from the single frequency filtering (SFF) method: (1) SFF cepstral coefficients (SFFCC) and (2) MFCCs from the SFF (MFCC-SFF) for the severity classification of PD. Prior studies have demonstrated that SFF offers greater spectro-temporal resolution compared to the short-time Fourier transform. The study uses the PC-GITA database, which includes speech of PD patients and healthy controls produced in three speaking tasks (vowels, sentences, text reading). Experiments using the SVM classifier revealed that the proposed features outperformed the conventional MFCCs in all three speaking tasks. The proposed SFFCC and MFCC-SFF features gave a relative improvement of 5.8% and 2.3% for the vowel task, 7.0% & 1.8% for the sentence task, and 2.4% and 1.1% for the read text task, in comparison to MFCC features.

In healthcare, the role of AI is continually evolving and understanding the challenges its introduction poses on relationships between healthcare providers and patients will require a regulatory and behavioural approach that can provide a guiding base for all users involved. In this paper, we present ACIPS (Acceptability, Comfortability, Informed Consent, Privacy, and Security), a framework for evaluating patient response to the introduction of AI-enabled digital technologies in healthcare settings. We justify the need for ACIPS with a general introduction of the challenges with and perceived relevance of AI in human-welfare centered fields, with an emphasis on the provision of healthcare. The framework is composed of five principles that measure the perceptions of acceptability, comfortability, informed consent, privacy, and security patients hold when learning how AI is used in their healthcare. We propose that the tenets composing this framework can be translated into guidelines outlining the proper use of AI in healthcare while broadening the limited understanding of this topic.

Recent advancements in AI applications to healthcare have shown incredible promise in surpassing human performance in diagnosis and disease prognosis. With the increasing complexity of AI models, however, concerns regarding their opacity, potential biases, and the need for interpretability. To ensure trust and reliability in AI systems, especially in clinical risk prediction models, explainability becomes crucial. Explainability is usually referred to as an AI system's ability to provide a robust interpretation of its decision-making logic or the decisions themselves to human stakeholders. In clinical risk prediction, other aspects of explainability like fairness, bias, trust, and transparency also represent important concepts beyond just interpretability. In this review, we address the relationship between these concepts as they are often used together or interchangeably. This review also discusses recent progress in developing explainable models for clinical risk prediction, highlighting the importance of quantitative and clinical evaluation and validation across multiple common modalities in clinical practice. It emphasizes the need for external validation and the combination of diverse interpretability methods to enhance trust and fairness. Adopting rigorous testing, such as using synthetic datasets with known generative factors, can further improve the reliability of explainability methods. Open access and code-sharing resources are essential for transparency and reproducibility, enabling the growth and trustworthiness of explainable research. While challenges exist, an end-to-end approach to explainability in clinical risk prediction, incorporating stakeholders from clinicians to developers, is essential for success.

Smartwatches enable the efficient collection of health data that can be used for research and comprehensive analysis to improve the health of individuals. In addition to the analysis capabilities, ensuring privacy when handling health data is a critical concern as the collection and analysis of such data become pervasive. Since health data contains sensitive information, it should be handled with responsibility and is therefore often treated anonymously. However, also the data itself can be exploited to reveal information and break anonymity. We propose a novel similarity-based re-identification attack on time-series health data and thereby unveil a significant vulnerability. Despite privacy measures that remove identifying information, our attack demonstrates that a brief amount of various sensor data from a target individual is adequate to possibly identify them within a database of other samples, solely based on sensor-level similarities. In our example scenario, where data owners leverage health data from smartwatches, findings show that we are able to correctly link the target data in two out of three cases. User privacy is thus already inherently threatened by the data itself and even when removing personal information.

Matching is a popular nonparametric covariate adjustment strategy in empirical health services research. Matching helps construct two groups comparable in many baseline covariates but different in some key aspects under investigation. In health disparities research, it is desirable to understand the contributions of various modifiable factors, like income and insurance type, to the observed disparity in access to health services between different groups. To single out the contributions from the factors of interest, we propose a statistical matching methodology that constructs nested matched comparison groups from, for instance, White men, that resemble the target group, for instance, black men, in some selected covariates while remaining identical to the white men population before matching in the remaining covariates. Using the proposed method, we investigated the disparity gaps between white men and black men in the US in prostate-specific antigen (PSA) screening based on the 2020 Behavioral Risk Factor Surveillance System (BFRSS) database. We found a widening PSA screening rate as the white matched comparison group increasingly resembles the black men group and quantified the contribution of modifiable factors like socioeconomic status. Finally, we provide code that replicates the case study and a tutorial that enables users to design customized matched comparison groups satisfying multiple criteria.

Visual information is central to conversation: body gestures and physical behaviour, for example, contribute to meaning that transcends words alone. To date, however, most neural conversational models are limited to just text. We introduce CHAMPAGNE, a generative model of conversations that can account for visual contexts. To train CHAMPAGNE, we collect and release YTD-18M, a large-scale corpus of 18M video-based dialogues. YTD-18M is constructed from web videos: crucial to our data collection pipeline is a pretrained language model that converts error-prone automatic transcripts to a cleaner dialogue format while maintaining meaning. Human evaluation reveals that YTD-18M is more sensible and specific than prior resources (MMDialog, 1M dialogues), while maintaining visual-groundedness. Experiments demonstrate that 1) CHAMPAGNE learns to conduct conversation from YTD-18M; and 2) when fine-tuned, it achieves state-of-the-art results on four vision-language tasks focused on real-world conversations. We release data, models, and code.

The prevalence of half-truths, which are statements containing some truth but that are ultimately deceptive, has risen with the increasing use of the internet. To help combat this problem, we have created a comprehensive pipeline consisting of a half-truth detection model and a claim editing model. Our approach utilizes the T5 model for controlled claim editing; "controlled" here means precise adjustments to select parts of a claim. Our methodology achieves an average BLEU score of 0.88 (on a scale of 0-1) and a disinfo-debunk score of 85% on edited claims. Significantly, our T5-based approach outperforms other Language Models such as GPT2, RoBERTa, PEGASUS, and Tailor, with average improvements of 82%, 57%, 42%, and 23% in disinfo-debunk scores, respectively. By extending the LIAR PLUS dataset, we achieve an F1 score of 82% for the half-truth detection model, setting a new benchmark in the field. While previous attempts have been made at half-truth detection, our approach is, to the best of our knowledge, the first to attempt to debunk half-truths.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

We study the problem of named entity recognition (NER) from electronic medical records, which is one of the most fundamental and critical problems for medical text mining. Medical records which are written by clinicians from different specialties usually contain quite different terminologies and writing styles. The difference of specialties and the cost of human annotation makes it particularly difficult to train a universal medical NER system. In this paper, we propose a label-aware double transfer learning framework (La-DTL) for cross-specialty NER, so that a medical NER system designed for one specialty could be conveniently applied to another one with minimal annotation efforts. The transferability is guaranteed by two components: (i) we propose label-aware MMD for feature representation transfer, and (ii) we perform parameter transfer with a theoretical upper bound which is also label aware. We conduct extensive experiments on 12 cross-specialty NER tasks. The experimental results demonstrate that La-DTL provides consistent accuracy improvement over strong baselines. Besides, the promising experimental results on non-medical NER scenarios indicate that La-DTL is potential to be seamlessly adapted to a wide range of NER tasks.

北京阿比特科技有限公司