亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern variable selection procedures make use of penalization methods to execute simultaneous model selection and estimation. A popular method is the LASSO (least absolute shrinkage and selection operator), which contains a tuning parameter. This parameter is typically tuned by minimizing the cross-validation error or Bayesian information criterion (BIC) but this can be computationally intensive as it involves fitting an array of different models and selecting the best one. However, we have developed a procedure based on the so-called "smooth IC" (SIC) in which the tuning parameter is automatically selected in one step. We also extend this model selection procedure to the so-called "multi-parameter regression" framework, which is more flexible than classical regression modelling. Multi-parameter regression introduces flexibility by taking account of the effect of covariates through multiple distributional parameters simultaneously, e.g., mean and variance. These models are useful in the context of normal linear regression when the process under study exhibits heteroscedastic behaviour. Reformulating the multi-parameter regression estimation problem in terms of penalized likelihood enables us to take advantage of the close relationship between model selection criteria and penalization. Utilizing the SIC is computationally advantageous, as it obviates the issue of having to choose multiple tuning parameters.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 方差 · 求逆 · INFORMS · MoDELS ·
2021 年 11 月 30 日

A completely randomized experiment allows us to estimate the causal effect by the difference in the averages of the outcome under the treatment and control. But, difference-in-means type estimators behave poorly if the potential outcomes have a heavy-tail, or contain a few extreme observations or outliers. We study an alternative estimator by Rosenbaum that estimates the causal effect by inverting a randomization test using ranks. We study the asymptotic properties of this estimator and develop a framework to compare the efficiencies of different estimators of the treatment effect in the setting of randomized experiments. In particular, we show that the Rosenbaum estimator has variance that is asymptotically, in the worst case, at most about 1.16 times the variance of the difference-in-means estimator, and can be much smaller when the potential outcomes are not light-tailed. We further derive a consistent estimator of the asymptotic standard error for the Rosenbaum estimator which immediately yields a readily computable confidence interval for the treatment effect, thereby alleviating the expensive numerical calculations needed to implement the original proposal of Rosenbaum. Further, we propose a regression adjusted version of the Rosenbaum estimator to incorporate additional covariate information in randomization inference. We prove gain in efficiency by this regression adjustment method under a linear regression model. Finally, we illustrate through simulations that, unlike the difference-in-means based estimators, either unadjusted or regression adjusted, these rank-based estimators are efficient and robust against heavy-tailed distributions, contamination, and various model misspecifications.

Logistic regression is a widely used statistical model to describe the relationship between a binary response variable and predictor variables in data sets. It is often used in machine learning to identify important predictor variables. This task, variable selection, typically amounts to fitting a logistic regression model regularized by a convex combination of $\ell_1$ and $\ell_{2}^{2}$ penalties. Since modern big data sets can contain hundreds of thousands to billions of predictor variables, variable selection methods depend on efficient and robust optimization algorithms to perform well. State-of-the-art algorithms for variable selection, however, were not traditionally designed to handle big data sets; they either scale poorly in size or are prone to produce unreliable numerical results. It therefore remains challenging to perform variable selection on big data sets without access to adequate and costly computational resources. In this paper, we propose a nonlinear primal-dual algorithm that addresses these shortcomings. Specifically, we propose an iterative algorithm that provably computes a solution to a logistic regression problem regularized by an elastic net penalty in $O(T(m,n)\log(1/\epsilon))$ operations, where $\epsilon \in (0,1)$ denotes the tolerance and $T(m,n)$ denotes the number of arithmetic operations required to perform matrix-vector multiplication on a data set with $m$ samples each comprising $n$ features. This result improves on the known complexity bound of $O(\min(m^2n,mn^2)\log(1/\epsilon))$ for first-order optimization methods such as the classic primal-dual hybrid gradient or forward-backward splitting methods.

This paper deals with the grouped variable selection problem. A widely used strategy is to equip the loss function with a sparsity-promoting penalty. Existing methods include the group Lasso, group SCAD, and group MCP. The group Lasso solves a convex optimization problem but is plagued by underestimation bias. The group SCAD and group MCP avoid the estimation bias but require solving a non-convex optimization problem that suffers from local optima. In this work, we propose an alternative method based on the generalized minimax concave (GMC) penalty, which is a folded concave penalty that can maintain the convexity of the objective function. We develop a new method for grouped variable selection in linear regression, the group GMC, that generalizes the strategy of the original GMC estimator. We present an efficient algorithm for computing the group GMC estimator. We also prove properties of the solution path to guide its numerical computation and tuning parameter selection in practice. We establish error bounds for both the group GMC and original GMC estimators. A rich set of simulation studies and a real data application indicate that the proposed group GMC approach outperforms existing methods in several different aspects under a wide array of scenarios.

Cluster-weighted models (CWMs) extend finite mixtures of regressions (FMRs) in order to allow the distribution of covariates to contribute to the clustering process. In a matrix-variate framework, the matrix-variate normal CWM has been recently introduced. However, problems may be encountered when data exhibit skewness or other deviations from normality in the responses, covariates or both. Thus, we introduce a family of 24 matrix-variate CWMs which are obtained by allowing both the responses and covariates to be modelled by using one of four existing skewed matrix-variate distributions or the matrix-variate normal distribution. Endowed with a greater flexibility, our matrix-variate CWMs are able to handle this kind of data in a more suitable manner. As a by-product, the four skewed matrix-variate FMRs are also introduced. Maximum likelihood parameter estimates are derived using an expectation-conditional maximization algorithm. Parameter recovery, classification assessment, and the capability of the Bayesian information criterion to detect the underlying groups are investigated using simulated data. Lastly, our matrix-variate CWMs, along with the matrix-variate normal CWM and matrix-variate FMRs, are applied to two real datasets for illustrative purposes.

We present an elementary mathematical method to find the minimax estimator of the Bernoulli proportion $\theta$ under the squared error loss when $\theta$ belongs to the restricted parameter space of the form $\Omega = [0, \eta]$ for some pre-specified constant $0 \leq \eta \leq 1$. This problem is inspired from the problem of estimating the rate of positive COVID-19 tests. The presented results and applications would be useful materials for both instructors and students when teaching point estimation in statistical or machine learning courses.

Response functions linking regression predictors to properties of the response distribution are fundamental components in many statistical models. However, the choice of these functions is typically based on the domain of the modeled quantities and is not further scrutinized. For example, the exponential response function is usually assumed for parameters restricted to be positive although it implies a multiplicative model which may not necessarily be desired. Consequently, applied researchers might easily face misleading results when relying on defaults without further investigation. As an alternative to the exponential response function, we propose the use of the softplus function to construct alternative link functions for parameters restricted to be positive. As a major advantage, we can construct differentiable link functions corresponding closely to the identity function for positive values of the regression predictor, which implies an quasi-additive model and thus allows for an additive interpretation of the estimated effects by practitioners. We demonstrate the applicability of the softplus response function using both simulations and real data. In four applications featuring count data regression and Bayesian distributional regression, we contrast our approach to the commonly used exponential response function.

Beta regression model is useful in the analysis of bounded continuous outcomes such as proportions. It is well known that for any regression model, the presence of multicollinearity leads to poor performance of the maximum likelihood estimators. The ridge type estimators have been proposed to alleviate the adverse effects of the multicollinearity. Furthermore, when some of the predictors have insignificant or weak effects on the outcomes, it is desired to recover as much information as possible from these predictors instead of discarding them all together. In this paper we proposed ridge type shrinkage estimators for the low and high dimensional beta regression model, which address the above two issues simultaneously. We compute the biases and variances of the proposed estimators in closed forms and use Monte Carlo simulations to evaluate their performances. The results show that, both in low and high dimensional data, the performance of the proposed estimators are superior to ridge estimators that discard weak or insignificant predictors. We conclude this paper by applying the proposed methods for two real data from econometric and medicine.

Post-click conversion, as a strong signal indicating the user preference, is salutary for building recommender systems. However, accurately estimating the post-click conversion rate (CVR) is challenging due to the selection bias, i.e., the observed clicked events usually happen on users' preferred items. Currently, most existing methods utilize counterfactual learning to debias recommender systems. Among them, the doubly robust (DR) estimator has achieved competitive performance by combining the error imputation based (EIB) estimator and the inverse propensity score (IPS) estimator in a doubly robust way. However, inaccurate error imputation may result in its higher variance than the IPS estimator. Worse still, existing methods typically use simple model-agnostic methods to estimate the imputation error, which are not sufficient to approximate the dynamically changing model-correlated target (i.e., the gradient direction of the prediction model). To solve these problems, we first derive the bias and variance of the DR estimator. Based on it, a more robust doubly robust (MRDR) estimator has been proposed to further reduce its variance while retaining its double robustness. Moreover, we propose a novel double learning approach for the MRDR estimator, which can convert the error imputation into the general CVR estimation. Besides, we empirically verify that the proposed learning scheme can further eliminate the high variance problem of the imputation learning. To evaluate its effectiveness, extensive experiments are conducted on a semi-synthetic dataset and two real-world datasets. The results demonstrate the superiority of the proposed approach over the state-of-the-art methods. The code is available at //github.com/guosyjlu/MRDR-DL.

This paper studies task adaptive pre-trained model selection, an \emph{underexplored} problem of assessing pre-trained models so that models suitable for the task can be selected from the model zoo without fine-tuning. A pilot work~\cite{nguyen_leep:_2020} addressed the problem in transferring supervised pre-trained models to classification tasks, but it cannot handle emerging unsupervised pre-trained models or regression tasks. In pursuit of a practical assessment method, we propose to estimate the maximum evidence (marginalized likelihood) of labels given features extracted by pre-trained models. The maximum evidence is \emph{less prone to over-fitting} than the likelihood, and its \emph{expensive computation can be dramatically reduced} by our carefully designed algorithm. The Logarithm of Maximum Evidence (LogME) can be used to assess pre-trained models for transfer learning: a pre-trained model with high LogME is likely to have good transfer performance. LogME is fast, accurate, and general, characterizing it as \emph{the first practical assessment method for transfer learning}. Compared to brute-force fine-tuning, LogME brings over $3000\times$ speedup in wall-clock time. It outperforms prior methods by a large margin in their setting and is applicable to new settings that prior methods cannot deal with. It is general enough to diverse pre-trained models (supervised pre-trained and unsupervised pre-trained), downstream tasks (classification and regression), and modalities (vision and language). Code is at \url{//github.com/thuml/LogME}.

This paper aims to explore models based on the extreme gradient boosting (XGBoost) approach for business risk classification. Feature selection (FS) algorithms and hyper-parameter optimizations are simultaneously considered during model training. The five most commonly used FS methods including weight by Gini, weight by Chi-square, hierarchical variable clustering, weight by correlation, and weight by information are applied to alleviate the effect of redundant features. Two hyper-parameter optimization approaches, random search (RS) and Bayesian tree-structured Parzen Estimator (TPE), are applied in XGBoost. The effect of different FS and hyper-parameter optimization methods on the model performance are investigated by the Wilcoxon Signed Rank Test. The performance of XGBoost is compared to the traditionally utilized logistic regression (LR) model in terms of classification accuracy, area under the curve (AUC), recall, and F1 score obtained from the 10-fold cross validation. Results show that hierarchical clustering is the optimal FS method for LR while weight by Chi-square achieves the best performance in XG-Boost. Both TPE and RS optimization in XGBoost outperform LR significantly. TPE optimization shows a superiority over RS since it results in a significantly higher accuracy and a marginally higher AUC, recall and F1 score. Furthermore, XGBoost with TPE tuning shows a lower variability than the RS method. Finally, the ranking of feature importance based on XGBoost enhances the model interpretation. Therefore, XGBoost with Bayesian TPE hyper-parameter optimization serves as an operative while powerful approach for business risk modeling.

北京阿比特科技有限公司