Hurricanes cause significant economic and human costs, requiring individuals to make critical evacuation decisions under uncertainty and stress. To enhance the understanding of this decision-making process, we propose using Bayesian Networks (BNs) to model evacuation decisions during hurricanes. We collected questionnaire data from two significant hurricane events: Hurricane Harvey and Hurricane Irma. We employed a data-driven approach by first conducting variable selection using mutual information, followed by BN structure learning with two constraint-based algorithms. The robustness of the learned structures was enhanced by model averaging based on bootstrap resampling. We examined and compared the learned structures of both hurricanes, revealing potential causal relationships among key predictors of evacuation, including risk perception, information received from media, suggestions from family and friends, and neighbors evacuating. Our findings highlight the significant role of social influence, providing valuable insights into the process of evacuation decision-making. Our results demonstrate the applicability and effectiveness of data-driven BN modeling in evacuation decision making.
Algorithms that use derivatives of governing equations have accelerated rigid robot simulations and improved their accuracy, enabling the modeling of complex, real-world capabilities. However, extending these methods to soft and hybrid soft-rigid robots is significantly more challenging due to the complexities in modeling continuous deformations inherent in soft bodies. A considerable number of soft robots and the deformable links of hybrid robots can be effectively modeled as slender rods. The Geometric Variable Strain (GVS) model, which employs the screw theory and the strain parameterization of the Cosserat rod, extends the rod theory to model hybrid soft-rigid robots within the same mathematical framework. Using the Recursive Newton-Euler Algorithm, we developed the analytical derivatives of the governing equations of the GVS model. These derivatives facilitate the implicit integration of dynamics and provide the analytical Jacobian of the statics residue, ensuring fast and accurate computations. We applied these derivatives to the mechanical simulations of six common robotic systems: a soft cable-driven manipulator, a hybrid serial robot, a fin-ray finger, a hybrid parallel robot, a contact scenario, and an underwater hybrid mobile robot. Simulation results demonstrate substantial improvements in computational efficiency, with speed-ups of up to three orders of magnitude. We validate the model by comparing simulations done with and without analytical derivatives. Beyond static and dynamic simulations, the techniques discussed in this paper hold the potential to revolutionize the analysis, control, and optimization of hybrid robotic systems for real-world applications.
Depth estimation under adverse conditions remains a significant challenge. Recently, multi-spectral depth estimation, which integrates both visible light and thermal images, has shown promise in addressing this issue. However, existing algorithms struggle with precise pixel-level feature matching, limiting their ability to fully exploit geometric constraints across different spectra. To address this, we propose a novel framework incorporating stereo depth estimation to enforce accurate geometric constraints. In particular, we treat the visible light and thermal images as a stereo pair and utilize a Cross-modal Feature Matching (CFM) Module to construct a cost volume for pixel-level matching. To mitigate the effects of poor lighting on stereo matching, we introduce Degradation Masking, which leverages robust monocular thermal depth estimation in degraded regions. Our method achieves state-of-the-art (SOTA) performance on the Multi-Spectral Stereo (MS2) dataset, with qualitative evaluations demonstrating high-quality depth maps under varying lighting conditions.
Content moderation on a global scale must navigate a complex array of local cultural distinctions, which can hinder effective enforcement. While global policies aim for consistency and broad applicability, they often miss the subtleties of regional language interpretation, cultural beliefs, and local legislation. This work introduces a flexible framework that enhances foundation language models with cultural knowledge. Our approach involves fine-tuning encoder-decoder models on media-diet data to capture cultural nuances, and applies a continued training regime to effectively integrate these models into a content moderation pipeline. We evaluate this framework in a case study of an online podcast platform with content spanning various regions. The results show that our culturally adapted models improve the accuracy of local violation detection and offer explanations that align more closely with regional cultural norms. Our findings reinforce the need for an adaptable content moderation approach that remains flexible in response to the diverse cultural landscapes it operates in and represents a step towards a more equitable and culturally sensitive framework for content moderation, demonstrating what is achievable in this domain.
The utilization of AIoT technology has become a crucial trend in modern poultry management, offering the potential to optimize farming operations and reduce human workloads. This paper presents a real-time and compact edge-AI enabled detector designed to identify chickens and their healthy statuses using frames captured by a lightweight and intelligent camera equipped with an edge-AI enabled CMOS sensor. To ensure efficient deployment of the proposed compact detector within the memory-constrained edge-AI enabled CMOS sensor, we employ a FCOS-Lite detector leveraging MobileNet as the backbone. To mitigate the issue of reduced accuracy in compact edge-AI detectors without incurring additional inference costs, we propose a gradient weighting loss function as classification loss and introduce CIOU loss function as localization loss. Additionally, we propose a knowledge distillation scheme to transfer valuable information from a large teacher detector to the proposed FCOS-Lite detector, thereby enhancing its performance while preserving a compact model size. Experimental results demonstrate the proposed edge-AI enabled detector achieves commendable performance metrics, including a mean average precision (mAP) of 95.1$\%$ and an F1-score of 94.2$\%$, etc. Notably, the proposed detector can be efficiently deployed and operates at a speed exceeding 20 FPS on the edge-AI enabled CMOS sensor, achieved through int8 quantization. That meets practical demands for automated poultry health monitoring using lightweight intelligent cameras with low power consumption and minimal bandwidth costs.
Denial of Service (DoS) attacks pose a significant threat in the realm of AI systems security, causing substantial financial losses and downtime. However, AI systems' high computational demands, dynamic behavior, and data variability make monitoring and detecting DoS attacks challenging. Nowadays, statistical and machine learning (ML)-based DoS classification and detection approaches utilize a broad range of feature selection mechanisms to select a feature subset from networking traffic datasets. Feature selection is critical in enhancing the overall model performance and attack detection accuracy while reducing the training time. In this paper, we investigate the importance of feature selection in improving ML-based detection of DoS attacks. Specifically, we explore feature contribution to the overall components in DoS traffic datasets by utilizing statistical analysis and feature engineering approaches. Our experimental findings demonstrate the usefulness of the thorough statistical analysis of DoS traffic and feature engineering in understanding the behavior of the attack and identifying the best feature selection for ML-based DoS classification and detection.
Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.
Due to the limited and even imbalanced data, semi-supervised semantic segmentation tends to have poor performance on some certain categories, e.g., tailed categories in Cityscapes dataset which exhibits a long-tailed label distribution. Existing approaches almost all neglect this problem, and treat categories equally. Some popular approaches such as consistency regularization or pseudo-labeling may even harm the learning of under-performing categories, that the predictions or pseudo labels of these categories could be too inaccurate to guide the learning on the unlabeled data. In this paper, we look into this problem, and propose a novel framework for semi-supervised semantic segmentation, named adaptive equalization learning (AEL). AEL adaptively balances the training of well and badly performed categories, with a confidence bank to dynamically track category-wise performance during training. The confidence bank is leveraged as an indicator to tilt training towards under-performing categories, instantiated in three strategies: 1) adaptive Copy-Paste and CutMix data augmentation approaches which give more chance for under-performing categories to be copied or cut; 2) an adaptive data sampling approach to encourage pixels from under-performing category to be sampled; 3) a simple yet effective re-weighting method to alleviate the training noise raised by pseudo-labeling. Experimentally, AEL outperforms the state-of-the-art methods by a large margin on the Cityscapes and Pascal VOC benchmarks under various data partition protocols. Code is available at //github.com/hzhupku/SemiSeg-AEL
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). However, existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns. Our auxiliary loss is theoretically justified to learn representations that capture the structure of a new form of state-action abstraction, under which state-action pairs with similar return distributions are aggregated together. In low data regime, our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite, and achieves even better performance when combined with existing auxiliary tasks.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.