We consider the stochastic Cahn-Hilliard equation with additive space-time white noise $\epsilon^{\gamma}\dot{W}$ in dimension $d=2,3$, where $\epsilon>0$ is an interfacial width parameter. We study numerical approximation of the equation which combines a structure preserving implicit time-discretization scheme with a discrete approximation of the space-time white noise. We derive a strong error estimate for the considered numerical approximation which is robust with respect to the inverse of the interfacial width parameter $\epsilon$. Furthermore, by a splitting approach, we show that for sufficiently large scaling parameter $\gamma$, the numerical approximation of the stochastic Cahn-Hilliard equation converges uniformly to the deterministic Hele-Shaw/Mullins-Sekerka problem in the sharp interface limit $\epsilon\rightarrow 0$.
We consider approximating solutions to parameterized linear systems of the form $A(\mu_1,\mu_2) x(\mu_1,\mu_2) = b$, where $(\mu_1, \mu_2) \in \mathbb{R}^2$. Here the matrix $A(\mu_1,\mu_2) \in \mathbb{R}^{n \times n}$ is nonsingular, large, and sparse and depends nonlinearly on the parameters $\mu_1$ and $\mu_2$. Specifically, the system arises from a discretization of a partial differential equation and $x(\mu_1,\mu_2) \in \mathbb{R}^n$, $b \in \mathbb{R}^n$. This work combines companion linearization with the Krylov subspace method preconditioned bi-conjugate gradient (BiCG) and a decomposition of a tensor matrix of precomputed solutions, called snapshots. As a result, a reduced order model of $x(\mu_1,\mu_2)$ is constructed, and this model can be evaluated in a cheap way for many values of the parameters. Tensor decompositions performed on a set of snapshots can fail to reach a certain level of accuracy, and it is not known a priori if a decomposition will be successful. Moreover, the selection of snapshots can affect both the quality of the produced model and the computation time required for its construction. This new method offers a way to generate a new set of solutions on the same parameter space at little additional cost. An interpolation of the model is used to produce approximations on the entire parameter space, and this method can be used to solve a parameter estimation problem. Numerical examples of a parameterized Helmholtz equation show the competitiveness of our approach. The simulations are reproducible, and the software is available online.
Of all the possible projection methods for solving large-scale Lyapunov matrix equations, Galerkin approaches remain much more popular than minimal-residual ones. This is mainly due to the different nature of the projected problems stemming from these two families of methods. While a Galerkin approach leads to the solution of a low-dimensional matrix equation per iteration, a matrix least-squares problem needs to be solved per iteration in a minimal-residual setting. The significant computational cost of these least-squares problems has steered researchers towards Galerkin methods in spite of the appealing properties of minimal-residual schemes. In this paper we introduce a framework that allows for modifying the Galerkin approach by low-rank, additive corrections to the projected matrix equation problem with the two-fold goal of attaining monotonic convergence rates similar to those of minimal-residual schemes while maintaining essentially the same computational cost of the original Galerkin method. We analyze the well-posedness of our framework and determine possible scenarios where we expect the residual norm attained by two low-rank-modified variants to behave similarly to the one computed by a minimal-residual technique. A panel of diverse numerical examples shows the behavior and potential of our new approach.
An \emph{eight-partition} of a finite set of points (respectively, of a continuous mass distribution) in $\mathbb{R}^3$ consists of three planes that divide the space into $8$ octants, such that each open octant contains at most $1/8$ of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in $\mathbb{R}^3$ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in $\mathbb{R}^3$ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of $n$ points in~$\mathbb{R}^3$ (with prescribed normal direction of one of the planes) in time $O^{*}(n^{5/2})$.
Let $D$ be a digraph. Its acyclic number $\vec{\alpha}(D)$ is the maximum order of an acyclic induced subdigraph and its dichromatic number $\vec{\chi}(D)$ is the least integer $k$ such that $V(D)$ can be partitioned into $k$ subsets inducing acyclic subdigraphs. We study ${\vec a}(n)$ and $\vec t(n)$ which are the minimum of $\vec\alpha(D)$ and the maximum of $\vec{\chi}(D)$, respectively, over all oriented triangle-free graphs of order $n$. For every $\epsilon>0$ and $n$ large enough, we show $(1/\sqrt{2} - \epsilon) \sqrt{n\log n} \leq \vec{a}(n) \leq \frac{107}{8} \sqrt n \log n$ and $\frac{8}{107} \sqrt n/\log n \leq \vec{t}(n) \leq (\sqrt 2 + \epsilon) \sqrt{n/\log n}$. We also construct an oriented triangle-free graph on 25 vertices with dichromatic number~3, and show that every oriented triangle-free graph of order at most 17 has dichromatic number at most 2.
Let $M$ be an $n\times n$ matrix of homogeneous linear forms over a field $\Bbbk$. If the ideal $\mathcal{I}_{n-2}(M)$ generated by minors of size $n-1$ is Cohen-Macaulay, then the Gulliksen-Neg{\aa}rd complex is a free resolution of $\mathcal{I}_{n-2}(M)$. It has recently been shown that by taking into account the syzygy modules for $\mathcal{I}_{n-2}(M)$ which can be obtained from this complex, one can derive a refined signature-based Gr\"obner basis algorithm DetGB which avoids reductions to zero when computing a grevlex Gr\"obner basis for $\mathcal{I}_{n-2}(M)$. In this paper, we establish sharp complexity bounds on DetGB. To accomplish this, we prove several results on the sizes of reduced grevlex Gr\"obner bases of reverse lexicographic ideals, thanks to which we obtain two main complexity results which rely on conjectures similar to that of Fr\"oberg. The first one states that, in the zero-dimensional case, the size of the reduced grevlex Gr\"obner basis of $\mathcal{I}_{n-2}(M)$ is bounded from below by $n^{6}$ asymptotically. The second, also in the zero-dimensional case, states that the complexity of DetGB is bounded from above by $n^{2\omega+3}$ asymptotically, where $2\le\omega\le 3$ is any complexity exponent for matrix multiplication over $\Bbbk$.
This paper develops a two-stage stochastic model to investigate evolution of random fields on the unit sphere $\bS^2$ in $\R^3$. The model is defined by a time-fractional stochastic diffusion equation on $\bS^2$ governed by a diffusion operator with the time-fractional derivative defined in the Riemann-Liouville sense. In the first stage, the model is characterized by a homogeneous problem with an isotropic Gaussian random field on $\bS^2$ as an initial condition. In the second stage, the model becomes an inhomogeneous problem driven by a time-delayed Brownian motion on $\bS^2$. The solution to the model is given in the form of an expansion in terms of complex spherical harmonics. An approximation to the solution is given by truncating the expansion of the solution at degree $L\geq1$. The rate of convergence of the truncation errors as a function of $L$ and the mean square errors as a function of time are also derived. It is shown that the convergence rates depend not only on the decay of the angular power spectrum of the driving noise and the initial condition, but also on the order of the fractional derivative. We study sample properties of the stochastic solution and show that the solution is an isotropic H\"{o}lder continuous random field. Numerical examples and simulations inspired by the cosmic microwave background (CMB) are given to illustrate the theoretical findings.
This paper deals with the equation $-\Delta u+\mu u=f$ on high-dimensional spaces $\mathbb{R}^m$, where the right-hand side $f(x)=F(Tx)$ is composed of a separable function $F$ with an integrable Fourier transform on a space of a dimension $n>m$ and a linear mapping given by a matrix $T$ of full rank and $\mu\geq 0$ is a constant. For example, the right-hand side can explicitly depend on differences $x_i-x_j$ of components of $x$. Following our publication [Numer. Math. (2020) 146:219--238], we show that the solution of this equation can be expanded into sums of functions of the same structure and develop in this framework an equally simple and fast iterative method for its computation. The method is based on the observation that in almost all cases and for large problem classes the expression $\|T^ty\|^2$ deviates on the unit sphere $\|y\|=1$ the less from its mean value the higher the dimension $m$ is, a concentration of measure effect. The higher the dimension $m$, the faster the iteration converges.
We survey recent developments in the field of complexity of pathwise approximation in $p$-th mean of the solution of a stochastic differential equation at the final time based on finitely many evaluations of the driving Brownian motion. First, we briefly review the case of equations with globally Lipschitz continuous coefficients, for which an error rate of at least $1/2$ in terms of the number of evaluations of the driving Brownian motion is always guaranteed by using the equidistant Euler-Maruyama scheme. Then we illustrate that giving up the global Lipschitz continuity of the coefficients may lead to a non-polynomial decay of the error for the Euler-Maruyama scheme or even to an arbitrary slow decay of the smallest possible error that can be achieved on the basis of finitely many evaluations of the driving Brownian motion. Finally, we turn to recent positive results for equations with a drift coefficient that is not globally Lipschitz continuous. Here we focus on scalar equations with a Lipschitz continuous diffusion coefficient and a drift coefficient that satisfies piecewise smoothness assumptions or has fractional Sobolev regularity and we present corresponding complexity results.
Acoustic wave equation is a partial differential equation (PDE) which describes propagation of acoustic waves through a material. In general, the solution to this PDE is nonunique. Therefore, it is necessary to impose initial conditions in the form of Cauchy conditions for obtaining a unique solution. Theoretically, solving the wave equation is equivalent to representing the wavefield in terms of a radiation source which possesses finite energy over space and time.The radiation source is represented by a forcing term in the right-hand-side of the wave equation. In practice, the source may be represented in terms of normal derivative of pressure or normal velocity over a surface. The pressure wavefield is then calculated by solving an associated boundary-value problem via imposing conditions on the boundary of a chosen solution space. From analytic point of view, this manuscript aims to review typical approaches for obtaining unique solution to the acoustic wave equation in terms of either a volumetric radiation source, or a surface source in terms of normal derivative of pressure or normal velocity. A numerical approximation of the derived formulae will then be explained. The key step for numerically approximating the derived analytic formulae is inclusion of source, and will be studied carefully in this manuscript.
The logics $\mathsf{CS4}$ and $\mathsf{IS4}$ are the two leading intuitionistic variants of the modal logic $\mathsf{S4}$. Whether the finite model property holds for each of these logics have been long-standing open problems. It was recently shown that $\mathsf{IS4}$ has the finite frame property and thus the finite model property. In this paper, we prove that $\mathsf{CS4}$ also enjoys the finite frame property. Additionally, we investigate the following three logics closely related to $\mathsf{IS4}$. The logic $\mathsf{GS4}$ is obtained by adding the G\"odel--Dummett axiom to $\mathsf{IS4}$; it is both a superintuitionistic and a fuzzy logic and has previously been given a real-valued semantics. We provide an alternative birelational semantics and prove strong completeness with respect to this semantics. The extension $\mathsf{GS4^c}$ of $\mathsf{GS4}$ corresponds to requiring a crisp accessibility relation on the real-valued semantics. We give a birelational semantics corresponding to an extra confluence condition on the $\mathsf{GS4}$ birelational semantics and prove strong completeness. Neither of these two logics have the finite model property with respect to their real-valued semantics, but we prove that they have the finite frame property for their birelational semantics. Establishing the finite birelational frame property immediately establishes decidability, which was previously open for these two logics. Our proofs yield NEXPTIME upper bounds. The logic $\mathsf{S4I}$ is obtained from $\mathsf{IS4}$ by reversing the roles of the modal and intuitionistic relations in the birelational semantics. We also prove the finite frame property, and thereby decidability, for $\mathsf{S4I}$