亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reconfigurable intelligent surface (RIS) can effectively control the wavefront of the impinging signals and has emerged as a cost-effective promising solution to improve the spectrum and energy efficiency of wireless systems. Most existing researches on RIS assume that the hardware operations are perfect. However, both physical transceiver and RIS suffer from inevitable hardware impairments in practice, which can lead to severe system performance degradation and increase the complexity of beamforming optimization. Consequently, the existing researches on RIS, including channel estimation, beamforming optimization, spectrum and energy efficiency analysis, etc., cannot directly apply to the case of hardware impairments. In this paper, by taking hardware impairments into consideration, we conduct the joint transmit and reflect beamforming optimization, and reevaluate the system performance. First, we characterize the closed-form estimators of direct and cascaded channels in both single-user and multi-user cases, and analyze the impact of hardware impairments on channel estimation accuracy. Then, the optimal transmit beamforming solution is derived, and a gradient descent method-based algorithm is also proposed to optimize the reflect beamforming. Moreover, we analyze the three types of asymptotic channel capacities with respect to the transmit power, the antenna number, and the reflecting element number. Finally, in terms of the system energy consumption, we analyze the power scaling law and the energy efficiency. Our experimental results also reveal an encouraging phenomenon that the RIS-assisted wireless system with massive reflecting elements can achieve both high spectrum and energy efficiency without the need for massive antennas and without allocating too many resources to optimize the reflect beamforming.

相關內容

Are intelligent machines really intelligent? Is the underlying philosophical concept of intelligence satisfactory for describing how the present systems work? Is understanding a necessary and sufficient condition for intelligence? If a machine could understand, should we attribute subjectivity to it? This paper addresses the problem of deciding whether the so-called "intelligent machines" are capable of understanding, instead of merely processing signs. It deals with the relationship between syntaxis and semantics. The main thesis concerns the inevitability of semantics for any discussion about the possibility of building conscious machines, condensed into the following two tenets: "If a machine is capable of understanding (in the strong sense), then it must be capable of combining rules and intuitions"; "If semantics cannot be reduced to syntaxis, then a machine cannot understand." Our conclusion states that it is not necessary to attribute understanding to a machine in order to explain its exhibited "intelligent" behavior; a merely syntactic and mechanistic approach to intelligence as a task-solving tool suffices to justify the range of operations that it can display in the current state of technological development.

In this paper, we study a sequential decision making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests, and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the number of parcels that can be delivered during the service hours. We propose two reinforcement learning approaches for solving this problem, one based on a policy function approximation (PFA) and the second on a value function approximation (VFA). Both methods are combined with a look-ahead strategy, in which future release dates are sampled in a Monte-Carlo fashion and a tailored batch approach is used to approximate the value of future states. Our PFA and VFA make a good use of branch-and-cut-based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into PFA/VFA. In an empirical study based on 720 benchmark instances, we conduct a competitive analysis using upper bounds with perfect information and we show that PFA and VFA greatly outperform two alternative myopic approaches. Overall, PFA provides best solutions, while VFA (which benefits from a two-stage stochastic optimization model) achieves a better tradeoff between solution quality and computing time.

A simultaneously transmitting and reflecting intelligent surface (STARS) enabled integrated sensing and communications (ISAC) framework is proposed, where the whole space is divided by STARS into a sensing space and a communication space. A novel sensing-at-STARS structure, where dedicated sensors are installed at the STARS, is proposed to address the significant path loss and clutter interference for sensing. The Cramer-Rao bound (CRB) of the 2-dimension (2D) direction-of-arrivals (DOAs) estimation of the sensing target is derived, which is then minimized subject to the minimum communication requirement. A novel approach is proposed to transform the complicated CRB minimization problem into a trackable modified Fisher information matrix (FIM) optimization problem. Both independent and coupled phase-shift models of STARS are investigated: 1) For the independent phase-shift model, to address the coupling of ISAC waveform and STARS coefficient in the modified FIM, an efficient double-loop iterative algorithm based on the penalty dual decomposition (PDD) framework is conceived; 2) For the coupled phase-shift model, based on the PDD framework, a low complexity alternating optimization algorithm is proposed to tackle coupled phase-shift constants by alternatively optimizing amplitude and phase-shift coefficients in closed-form. Finally, the numerical results demonstrate that: 1) STARS significantly outperforms the conventional RIS in CRB under the communication constraints; 2) The coupled phase-shift model achieves comparable performance to the independent one for low communication requirements or sufficient STARS elements; 3) It is more efficient to increase the number of passive elements of STARS rather than the active elements of the sensor; 4) High sensing accuracy can be achieved by STARS using the practical 2D maximum likelihood estimator compared with the conventional RIS.

Intelligent reflecting surfaces (IRSs) have recently received significant attention for wireless communications because it reduces the hardware complexity, physical size, weight, and cost of conventional large arrays. However, deployment of IRS entails dealing with multiple channel links between the base station (BS) and the users. Further, the BS and IRS beamformers require a joint design, wherein the IRS elements must be rapidly reconfigured. Data-driven techniques, such as deep learning (DL), are critical in addressing these challenges. The lower computation time and model-free nature of DL makes it robust against the data imperfections and environmental changes. At the physical layer, DL has been shown to be effective for IRS signal detection, channel estimation and active/passive beamforming using architectures such as supervised, unsupervised and reinforcement learning. This article provides a synopsis of these techniques for designing DL-based IRS-assisted wireless systems.

It was observed in \citet{gupta2009differentially} that the Set Cover problem has strong impossibility results under differential privacy. In our work, we observe that these hardness results dissolve when we turn to the Partial Set Cover problem, where we only need to cover a $\rho$-fraction of the elements in the universe, for some $\rho\in(0,1)$. We show that this relaxation enables us to avoid the impossibility results: under loose conditions on the input set system, we give differentially private algorithms which output an explicit set cover with non-trivial approximation guarantees. In particular, this is the first differentially private algorithm which outputs an explicit set cover. Using our algorithm for Partial Set Cover as a subroutine, we give a differentially private (bicriteria) approximation algorithm for a facility location problem which generalizes $k$-center/$k$-supplier with outliers. Like with the Set Cover problem, no algorithm has been able to give non-trivial guarantees for $k$-center/$k$-supplier-type facility location problems due to the high sensitivity and impossibility results. Our algorithm shows that relaxing the covering requirement to serving only a $\rho$-fraction of the population, for $\rho\in(0,1)$, enables us to circumvent the inherent hardness. Overall, our work is an important step in tackling and understanding impossibility results in private combinatorial optimization.

Federated edge learning (FEEL) has emerged as a revolutionary paradigm to develop AI services at the edge of 6G wireless networks as it supports collaborative model training at a massive number of mobile devices. However, model communication over wireless channels, especially in uplink model uploading of FEEL, has been widely recognized as a bottleneck that critically limits the efficiency of FEEL. Although over-the-air computation can alleviate the excessive cost of radio resources in FEEL model uploading, practical implementations of over-the-air FEEL still suffer from several challenges, including strong straggler issues, large communication overheads, and potential privacy leakage. In this article, we study these challenges in over-the-air FEEL and leverage reconfigurable intelligent surface (RIS), a key enabler of future wireless systems, to address these challenges. We study the state-of-the-art solutions on RIS-empowered FEEL and explore the promising research opportunities for adopting RIS to enhance FEEL performance.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.

北京阿比特科技有限公司