亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a generalization of the synthetic control and synthetic interventions methodology to the dynamic treatment regime. We consider the estimation of unit-specific treatment effects from panel data collected via a dynamic treatment regime and in the presence of unobserved confounding. That is, each unit receives multiple treatments sequentially, based on an adaptive policy, which depends on a latent endogenously time-varying confounding state of the treated unit. Under a low-rank latent factor model assumption and a technical overlap assumption we propose an identification strategy for any unit-specific mean outcome under any sequence of interventions. The latent factor model we propose admits linear time-varying and time-invariant dynamical systems as special cases. Our approach can be seen as an identification strategy for structural nested mean models under a low-rank latent factor assumption on the blip effects. Our method, which we term "synthetic blip effects", is a backwards induction process, where the blip effect of a treatment at each period and for a target unit is recursively expressed as linear combinations of blip effects of a carefully chosen group of other units that received the designated treatment. Our work avoids the combinatorial explosion in the number of units that would be required by a vanilla application of prior synthetic control and synthetic intervention methods in such dynamic treatment regime settings.

相關內容

We consider a model where a signal (discrete or continuous) is observed with an additive Gaussian noise process. The signal is issued from a linear combination of a finite but increasing number of translated features. The features are continuously parameterized by their location and depend on some scale parameter. First, we extend previous prediction results for off-the-grid estimators by taking into account here that the scale parameter may vary. The prediction bounds are analogous, but we improve the minimal distance between two consecutive features locations in order to achieve these bounds. Next, we propose a goodness-of-fit test for the model and give non-asymptotic upper bounds of the testing risk and of the minimax separation rate between two distinguishable signals. In particular, our test encompasses the signal detection framework. We deduce upper bounds on the minimal energy, expressed as the 2-norm of the linear coefficients, to successfully detect a signal in presence of noise. The general model considered in this paper is a non-linear extension of the classical high-dimensional regression model. It turns out that, in this framework, our upper bound on the minimax separation rate matches (up to a logarithmic factor) the lower bound on the minimax separation rate for signal detection in the high dimensional linear model associated to a fixed dictionary of features. We also propose a procedure to test whether the features of the observed signal belong to a given finite collection under the assumption that the linear coefficients may vary, but do not change to opposite signs under the null hypothesis. A non-asymptotic upper bound on the testing risk is given. We illustrate our results on the spikes deconvolution model with Gaussian features on the real line and with the Dirichlet kernel, frequently used in the compressed sensing literature, on the torus.

The ability of snapshot compressive imaging (SCI) systems to efficiently capture high-dimensional (HD) data has led to an inverse problem, which consists of recovering the HD signal from the compressed and noisy measurement. While reconstruction algorithms grow fast to solve it with the recent advances of deep learning, the fundamental issue of accurate and stable recovery remains. To this end, we propose deep equilibrium models (DEQ) for video SCI, fusing data-driven regularization and stable convergence in a theoretically sound manner. Each equilibrium model implicitly learns a nonexpansive operator and analytically computes the fixed point, thus enabling unlimited iterative steps and infinite network depth with only a constant memory requirement in training and testing. Specifically, we demonstrate how DEQ can be applied to two existing models for video SCI reconstruction: recurrent neural networks (RNN) and Plug-and-Play (PnP) algorithms. On a variety of datasets and real data, both quantitative and qualitative evaluations of our results demonstrate the effectiveness and stability of our proposed method. The code and models are available at: //github.com/IndigoPurple/DEQSCI .

To infer the treatment effect for a single treated unit using panel data, synthetic control methods search for a linear combination of control units' outcomes that mimics the treated unit's pre-treatment outcome trajectory. This linear combination is subsequently used to impute the counterfactual outcomes of the treated unit had it not been treated in the post-treatment period, and used to estimate the treatment effect. Existing synthetic control methods rely on correctly modeling certain aspects of the counterfactual outcome generating mechanism and may require near-perfect matching of the pre-treatment trajectory. Inspired by proximal causal inference, we obtain two novel nonparametric identifying formulas for the average treatment effect for the treated unit: one is based on weighting, and the other combines models for the counterfactual outcome and the weighting function. We introduce the concept of covariate shift to synthetic controls to obtain these identification results conditional on the treatment assignment. We also develop two treatment effect estimators based on these two formulas and the generalized method of moments. One new estimator is doubly robust: it is consistent and asymptotically normal if at least one of the outcome and weighting models is correctly specified. We demonstrate the performance of the methods via simulations and apply them to evaluate the effect of a tax cut in Kansas on GDP.

Observational studies have recently received significant attention from the machine learning community due to the increasingly available non-experimental observational data and the limitations of the experimental studies, such as considerable cost, impracticality, small and less representative sample sizes, etc. In observational studies, de-confounding is a fundamental problem of individualised treatment effects (ITE) estimation. This paper proposes disentangled representations with adversarial training to selectively balance the confounders in the binary treatment setting for the ITE estimation. The adversarial training of treatment policy selectively encourages treatment-agnostic balanced representations for the confounders and helps to estimate the ITE in the observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets, with varying degrees of confounding, prove that our proposed approach improves the state-of-the-art methods in achieving lower error in the ITE estimation.

This paper proposes a Kolmogorov-Smirnov type statistic and a Cram\'er-von Mises type statistic to test linearity in semi-functional partially linear regression models. Our test statistics are based on a residual marked empirical process indexed by a randomly projected functional covariate,which is able to circumvent the "curse of dimensionality" brought by the functional covariate. The asymptotic properties of the proposed test statistics under the null, the fixed alternative, and a sequence of local alternatives converging to the null at the $n^{1/2}$ rate are established. A straightforward wild bootstrap procedure is suggested to estimate the critical values that are required to carry out the tests in practical applications. Results from an extensive simulation study show that our tests perform reasonably well in finite samples.Finally, we apply our tests to the Tecator and AEMET datasets to check whether the assumption of linearity is supported by these datasets.

This paper considers identification and estimation of the causal effect of the time Z until a subject is treated on a survival outcome T. The treatment is not randomly assigned, T is randomly right censored by a random variable C and the time to treatment Z is right censored by min(T,C). The endogeneity issue is treated using an instrumental variable explaining Z and independent of the error term of the model. We study identification in a fully nonparametric framework. We show that our specification generates an integral equation, of which the regression function of interest is a solution. We provide identification conditions that rely on this identification equation. For estimation purposes, we assume that the regression function follows a parametric model. We propose an estimation procedure and give conditions under which the estimator is asymptotically normal. The estimators exhibit good finite sample properties in simulations. Our methodology is applied to find evidence supporting the efficacy of a therapy for burn-out.

We tackle the problem of novel class discovery and localization (NCDL). In this setting, we assume a source dataset with supervision for only some object classes. Instances of other classes need to be discovered, classified, and localized automatically based on visual similarity without any human supervision. To tackle NCDL, we propose a two-stage object detection network Region-based NCDL (RNCDL) that uses a region proposal network to localize regions of interest (RoIs). We then train our network to learn to classify each RoI, either as one of the known classes, seen in the source dataset, or one of the novel classes, with a long-tail distribution constraint on the class assignments, reflecting the natural frequency of classes in the real world. By training our detection network with this objective in an end-to-end manner, it learns to classify all region proposals for a large variety of classes, including those not part of the labeled object class vocabulary. Our experiments conducted using COCO and LVIS datasets reveal that our method is significantly more effective than multi-stage pipelines that rely on traditional clustering algorithms. Furthermore, we demonstrate the generality of our approach by applying our method to a large-scale Visual Genome dataset, where our network successfully learns to detect various semantic classes without direct supervision.

Due to the noises in crowdsourced labels, label aggregation (LA) has emerged as a standard procedure to post-process crowdsourced labels. LA methods estimate true labels from crowdsourced labels by modeling worker qualities. Most existing LA methods are iterative in nature. They need to traverse all the crowdsourced labels multiple times in order to jointly and iteratively update true labels and worker qualities until convergence. Consequently, these methods have high space and time complexities. In this paper, we treat LA as a dynamic system and model it as a Dynamic Bayesian network. From the dynamic model we derive two light-weight algorithms, LA\textsuperscript{onepass} and LA\textsuperscript{twopass}, which can effectively and efficiently estimate worker qualities and true labels by traversing all the labels at most twice. Due to the dynamic nature, the proposed algorithms can also estimate true labels online without re-visiting historical data. We theoretically prove the convergence property of the proposed algorithms, and bound the error of estimated worker qualities. We also analyze the space and time complexities of the proposed algorithms and show that they are equivalent to those of majority voting. Experiments conducted on 20 real-world datasets demonstrate that the proposed algorithms can effectively and efficiently aggregate labels in both offline and online settings even if they traverse all the labels at most twice.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

北京阿比特科技有限公司