This paper introduces a novel approach to enumerate and assess Trapping sets in quasi-cyclic codes, those with circulant sizes that are non-prime numbers. Leveraging the quasi-cyclic properties, the method employs a tabular technique to streamline the importance sampling step for estimating the pseudo-codeword weight of Trapping sets. The presented methodology draws on the mathematical framework established in the provided theorem, which elucidates the behavior of projection and lifting transformations on pseudo-codewords
This paper proposes Anonymised Fixed-Ring Identification for Decentralised Identity Documents which uses an anonymity property ensured by ring signatures to allow users to identify themselves through digital signatures without revealing which public key they used.
This paper proposes a novel three tier architecture for federated learning to optimize edge computing environments. The proposed architecture addresses the challenges associated with client data heterogeneity and computational constraints. It introduces a scalable, privacy preserving framework that enhances the efficiency of distributed machine learning. Through experimentation, the paper demonstrates the architecture capability to manage non IID data sets more effectively than traditional federated learning models. Additionally, the paper highlights the potential of this innovative approach to significantly improve model accuracy, reduce communication overhead, and facilitate broader adoption of federated learning technologies.
This paper considers a movable antenna (MA)-aided secure multiple-input multiple-output (MIMO) communication system consisting of a base station (BS), a legitimate information receiver (IR) and an eavesdropper (Eve), where the BS is equipped with MAs to enhance the system's physical layer security (PLS). Specifically, we aim to maximize the secrecy rate (SR) by jointly optimizing the transmit precoding (TPC) matrix, the artificial noise (AN) covariance matrix and the MAs' positions under the constraints of the maximum transmit power and the minimum distance between MAs. To solve this non-convex problem with highly coupled optimization variables, the block coordinate descent (BCD) method is applied to alternately update the variables. Specifically, we first reformulate the SR into a tractable form by utilizing the minimum mean square error (MMSE) method, and derive the optimal TPC matrix and the AN covariance matrix with fixed MAs' positions by applying the Lagrangian multiplier method in semi-closed forms. Then, the majorization-minimization (MM) algorithm is employed to iteratively optimize each MA's position while keeping others fixed. Finally, simulation results are provided to demonstrate the effectiveness of the proposed algorithms and the significant advantages of the MA-aided system over conventional fixed position antenna (FPA)-based system in enhancing system's security.
This paper introduces a novel human pose estimation approach using sparse inertial sensors, addressing the shortcomings of previous methods reliant on synthetic data. It leverages a diverse array of real inertial motion capture data from different skeleton formats to improve motion diversity and model generalization. This method features two innovative components: a pseudo-velocity regression model for dynamic motion capture with inertial sensors, and a part-based model dividing the body and sensor data into three regions, each focusing on their unique characteristics. The approach demonstrates superior performance over state-of-the-art models across five public datasets, notably reducing pose error by 19\% on the DIP-IMU dataset, thus representing a significant improvement in inertial sensor-based human pose estimation. Our codes are available at {\url{//github.com/dx118/dynaip}}.
This paper explores the task of language-agnostic speaker replication, a novel endeavor that seeks to replicate a speaker's voice irrespective of the language they are speaking. Towards this end, we introduce a multi-level attention aggregation approach that systematically probes and amplifies various speaker-specific attributes in a hierarchical manner. Through rigorous evaluations across a wide range of scenarios including seen and unseen speakers conversing in seen and unseen lingua, we establish that our proposed model is able to achieve substantial speaker similarity, and is able to generalize to out-of-domain (OOD) cases.
We introduce a novel bilateral reference framework (BiRefNet) for high-resolution dichotomous image segmentation (DIS). It comprises two essential components: the localization module (LM) and the reconstruction module (RM) with our proposed bilateral reference (BiRef). The LM aids in object localization using global semantic information. Within the RM, we utilize BiRef for the reconstruction process, where hierarchical patches of images provide the source reference and gradient maps serve as the target reference. These components collaborate to generate the final predicted maps. We also introduce auxiliary gradient supervision to enhance focus on regions with finer details. Furthermore, we outline practical training strategies tailored for DIS to improve map quality and training process. To validate the general applicability of our approach, we conduct extensive experiments on four tasks to evince that BiRefNet exhibits remarkable performance, outperforming task-specific cutting-edge methods across all benchmarks. Our codes are available at //github.com/ZhengPeng7/BiRefNet.
This paper presents an efficient method for updating particles in a particle filter (PF) to address the position estimation problem when dealing with sharp-peaked likelihood functions derived from multiple observations. Sharp-peaked likelihood functions commonly arise from millimeter-accurate distance observations of carrier phases in the global navigation satellite system (GNSS). However, when such likelihood functions are used for particle weight updates, the absence of particles within the peaks leads to all particle weights becoming zero. To overcome this problem, in this study, a straightforward and effective approach is introduced for updating particles when dealing with sharp-peaked likelihood functions obtained from multiple observations. The proposed method, termed as the multiple update PF, leverages prior knowledge regarding the spread of distribution for each likelihood function and conducts weight updates and resampling iteratively in the particle update process, prioritizing the likelihood function spreads. Experimental results demonstrate the efficacy of our proposed method, particularly when applied to position estimation utilizing GNSS pseudorange and carrier phase observations. The multiple update PF exhibits faster convergence with fewer particles when compared to the conventional PF. Moreover, vehicle position estimation experiments conducted in urban environments reveal that the proposed method outperforms conventional GNSS positioning techniques, yielding more accurate position estimates.
This paper introduces a novel neuro-symbolic architecture for relation classification (RC) that combines rule-based methods with contemporary deep learning techniques. This approach capitalizes on the strengths of both paradigms: the adaptability of rule-based systems and the generalization power of neural networks. Our architecture consists of two components: a declarative rule-based model for transparent classification and a neural component to enhance rule generalizability through semantic text matching. Notably, our semantic matcher is trained in an unsupervised domain-agnostic way, solely with synthetic data. Further, these components are loosely coupled, allowing for rule modifications without retraining the semantic matcher. In our evaluation, we focused on two few-shot relation classification datasets: Few-Shot TACRED and a Few-Shot version of NYT29. We show that our proposed method outperforms previous state-of-the-art models in three out of four settings, despite not seeing any human-annotated training data. Further, we show that our approach remains modular and pliable, i.e., the corresponding rules can be locally modified to improve the overall model. Human interventions to the rules for the TACRED relation \texttt{org:parents} boost the performance on that relation by as much as 26\% relative improvement, without negatively impacting the other relations, and without retraining the semantic matching component.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.