In this paper, we introduce a novel framework for the challenging problem of One-Shot Unsupervised Domain Adaptation (OSUDA), which aims to adapt to a target domain with only a single unlabeled target sample. Unlike existing approaches that rely on large labeled source and unlabeled target data, our Target-driven One-Shot UDA (TOS-UDA) approach employs a learnable augmentation strategy guided by the target sample's style to align the source distribution with the target distribution. Our method consists of three modules: an augmentation module, a style alignment module, and a classifier. Unlike existing methods, our augmentation module allows for strong transformations of the source samples, and the style of the single target sample available is exploited to guide the augmentation by ensuring perceptual similarity. Furthermore, our approach integrates augmentation with style alignment, eliminating the need for separate pre-training on additional datasets. Our method outperforms or performs comparably to existing OS-UDA methods on the Digits and DomainNet benchmarks.
In this paper, we present a novel approach to navigating endoluminal channels, specifically within the bronchial tubes, using Q-learning, a reinforcement learning algorithm. The proposed method involves training a Q-learning agent to navigate a simulated environment resembling bronchial tubes, with the ultimate goal of enabling the navigation of real bronchial tubes. We discuss the formulation of the problem, the simulation environment, the Q-learning algorithm, and the results of our experiments. Our results demonstrate the agent's ability to learn effective navigation strategies and reach predetermined goals within the simulated environment. This research contributes to the development of autonomous robotic systems for medical applications, particularly in challenging anatomical environments.
In this paper, we compute numerical approximations of the minimal surfaces, an essential type of Partial Differential Equation (PDE), in higher dimensions. Classical methods cannot handle it in this case because of the Curse of Dimensionality, where the computational cost of these methods increases exponentially fast in response to higher problem dimensions, far beyond the computing capacity of any modern supercomputers. Only in the past few years have machine learning researchers been able to mitigate this problem. The solution method chosen here is a model known as a Physics-Informed Neural Network (PINN) which trains a deep neural network (DNN) to solve the minimal surface PDE. It can be scaled up into higher dimensions and trained relatively quickly even on a laptop with no GPU. Due to the inability to view the high-dimension output, our data is presented as snippets of a higher-dimension shape with enough fixed axes so that it is viewable with 3-D graphs. Not only will the functionality of this method be tested, but we will also explore potential limitations in the method's performance.
In this paper, we compute numerical approximations of the minimal surfaces, an essential type of Partial Differential Equation (PDE), in higher dimensions. Classical methods cannot handle it in this case because of the Curse of Dimensionality, where the computational cost of these methods increases exponentially fast in response to higher problem dimensions, far beyond the computing capacity of any modern supercomputers. Only in the past few years have machine learning researchers been able to mitigate this problem. The solution method chosen here is a model known as a Physics-Informed Neural Network (PINN) which trains a deep neural network (DNN) to solve the minimal surface PDE. It can be scaled up into higher dimensions and trained relatively quickly even on a laptop with no GPU. Due to the inability to view the high-dimension output, our data is presented as snippets of a higher-dimension shape with enough fixed axes so that it is viewable with 3-D graphs. Not only will the functionality of this method be tested, but we will also explore potential limitations in the method's performance.
In this paper, we introduce a novel approach for generating texture images of infinite resolutions using Generative Adversarial Networks (GANs) based on a patch-by-patch paradigm. Existing texture synthesis techniques often rely on generating a large-scale texture using a one-forward pass to the generating model, this limits the scalability and flexibility of the generated images. In contrast, the proposed approach trains GANs models on a single texture image to generate relatively small patches that are locally correlated and can be seamlessly concatenated to form a larger image while using a constant GPU memory footprint. Our method learns the local texture structure and is able to generate arbitrary-size textures, while also maintaining coherence and diversity. The proposed method relies on local padding in the generator to ensure consistency between patches and utilizes spatial stochastic modulation to allow for local variations and diversity within the large-scale image. Experimental results demonstrate superior scalability compared to existing approaches while maintaining visual coherence of generated textures.
This paper presents Deep Networks for Improved Segmentation Edges (DeNISE), a novel data enhancement technique using edge detection and segmentation models to improve the boundary quality of segmentation masks. DeNISE utilizes the inherent differences in two sequential deep neural architectures to improve the accuracy of the predicted segmentation edge. DeNISE applies to all types of neural networks and is not trained end-to-end, allowing rapid experiments to discover which models complement each other. We test and apply DeNISE for building segmentation in aerial images. Aerial images are known for difficult conditions as they have a low resolution with optical noise, such as reflections, shadows, and visual obstructions. Overall the paper demonstrates the potential for DeNISE. Using the technique, we improve the baseline results with a building IoU of 78.9%.
In this paper, we propose a novel probabilistic self-supervised learning via Scoring Rule Minimization (ProSMIN), which leverages the power of probabilistic models to enhance representation quality and mitigate collapsing representations. Our proposed approach involves two neural networks; the online network and the target network, which collaborate and learn the diverse distribution of representations from each other through knowledge distillation. By presenting the input samples in two augmented formats, the online network is trained to predict the target network representation of the same sample under a different augmented view. The two networks are trained via our new loss function based on proper scoring rules. We provide a theoretical justification for ProSMIN's convergence, demonstrating the strict propriety of its modified scoring rule. This insight validates the method's optimization process and contributes to its robustness and effectiveness in improving representation quality. We evaluate our probabilistic model on various downstream tasks, such as in-distribution generalization, out-of-distribution detection, dataset corruption, low-shot learning, and transfer learning. Our method achieves superior accuracy and calibration, surpassing the self-supervised baseline in a wide range of experiments on large-scale datasets like ImageNet-O and ImageNet-C, ProSMIN demonstrates its scalability and real-world applicability.
In this paper, we propose a novel light field compression method based on a Quantized Distilled Low Rank Neural Radiance Field (QDLR-NeRF) representation. While existing compression methods encode the set of light field sub-aperture images, our proposed method instead learns an implicit scene representation in the form of a Neural Radiance Field (NeRF), which also enables view synthesis. For reducing its size, the model is first learned under a Low Rank (LR) constraint using a Tensor Train (TT) decomposition in an Alternating Direction Method of Multipliers (ADMM) optimization framework. To further reduce the model size, the components of the tensor train decomposition need to be quantized. However, performing the optimization of the NeRF model by simultaneously taking the low rank constraint and the rate-constrained weight quantization into consideration is challenging. To deal with this difficulty, we introduce a network distillation operation that separates the low rank approximation and the weight quantization in the network training. The information from the initial LR constrained NeRF (LR-NeRF) is distilled to a model of a much smaller dimension (DLR-NeRF) based on the TT decomposition of the LR-NeRF. An optimized global codebook is then learned to quantize all TT components, producing the final QDLRNeRF. Experimental results show that our proposed method yields better compression efficiency compared with state-of-the-art methods, and it additionally has the advantage of allowing the synthesis of any light field view with a high quality.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax