亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate a clustering problem with data from a mixture of Gaussians that share a common but unknown, and potentially ill-conditioned, covariance matrix. We start by considering Gaussian mixtures with two equally-sized components and derive a Max-Cut integer program based on maximum likelihood estimation. We prove its solutions achieve the optimal misclassification rate when the number of samples grows linearly in the dimension, up to a logarithmic factor. However, solving the Max-cut problem appears to be computationally intractable. To overcome this, we develop an efficient spectral algorithm that attains the optimal rate but requires a quadratic sample size. Although this sample complexity is worse than that of the Max-cut problem, we conjecture that no polynomial-time method can perform better. Furthermore, we gather numerical and theoretical evidence that supports the existence of a statistical-computational gap. Finally, we generalize the Max-Cut program to a $k$-means program that handles multi-component mixtures with possibly unequal weights. It enjoys similar optimality guarantees for mixtures of distributions that satisfy a transportation-cost inequality, encompassing Gaussian and strongly log-concave distributions.

相關內容

Spectral clustering algorithms are very popular. Starting from a pairwise similarity matrix, spectral clustering gives a partition of data that approximately minimizes the total similarity scores across clusters. Since there is no need to model how data are distributed within each cluster, such a method enjoys algorithmic simplicity and robustness in clustering non-Gaussian data such as those near manifolds. Nevertheless, several important questions are unaddressed, such as how to estimate the similarity scores and cluster assignment probabilities, as important uncertainty estimates in clustering. In this article, we propose to solve these problems with a discovered generative modeling counterpart. Our clustering model is based on a spanning forest graph that consists of several disjoint spanning trees, with each tree corresponding to a cluster. Taking a Bayesian approach, we assign proper densities on the root and leaf nodes, and we prove that the posterior mode is almost the same as spectral clustering estimates. Further, we show that the associated generative process, named "forest process", is a continuous extension to the classic urn process, hence inheriting many nice properties such as having unbounded support for the number of clusters and being amenable to existing partition probability function; at the same time, we carefully characterize their differences. We demonstrate a novel application in joint clustering of multiple-subject functional magnetic resonance imaging scans of the human brain.

We propose confidence regions with asymptotically correct uniform coverage probability of parameters whose Fisher information matrix can be singular at important points of the parameter set. Our work is motivated by the need for reliable inference on scale parameters close or equal to zero in mixed models, which is obtained as a special case. The confidence regions are constructed by inverting a continuous extension of the score test statistic standardized by expected information, which we show exists at points of singular information under regularity conditions. Similar results have previously only been obtained for scalar parameters, under conditions stronger than ours, and applications to mixed models have not been considered. In simulations our confidence regions have near-nominal coverage with as few as $n = 20$ independent observations, regardless of how close to the boundary the true parameter is. It is a corollary of our main results that the proposed test statistic has an asymptotic chi-square distribution with degrees of freedom equal to the number of tested parameters, even if they are on the boundary of the parameter set.

Many problems in computational science and engineering can be described in terms of approximating a smooth function of $d$ variables, defined over an unknown domain of interest $\Omega\subset \mathbb{R}^d$, from sample data. Here both the curse of dimensionality ($d\gg 1$) and the lack of domain knowledge with $\Omega$ potentially irregular and/or disconnected are confounding factors for sampling-based methods. Na\"{i}ve approaches often lead to wasted samples and inefficient approximation schemes. For example, uniform sampling can result in upwards of 20\% wasted samples in some problems. In surrogate model construction in computational uncertainty quantification (UQ), the high cost of computing samples needs a more efficient sampling procedure. In the last years, methods for computing such approximations from sample data have been studied in the case of irregular domains. The advantages of computing sampling measures depending on an approximation space $P$ of $\dim(P)=N$ have been shown. In particular, such methods confer advantages such as stability and well-conditioning, with $\mathcal{O}(N\log(N))$ as sample complexity. The recently-proposed adaptive sampling for general domains (ASGD) strategy is one method to construct these sampling measures. The main contribution of this paper is to improve ASGD by adaptively updating the sampling measures over unknown domains. We achieve this by first introducing a general domain adaptivity strategy (GDAS), which approximates the function and domain of interest from sample points. Second, we propose adaptive sampling for unknown domains (ASUD), which generates sampling measures over a domain that may not be known in advance. Then, we derive least squares techniques for polynomial approximation on unknown domains. Numerical results show that the ASUD approach can reduce the computational cost by as 50\% when compared with uniform sampling.

Clustering of mixed-type datasets can be a particularly challenging task as it requires taking into account the associations between variables with different level of measurement, i.e., nominal, ordinal and/or interval. In some cases, hierarchical clustering is considered a suitable approach, as it makes few assumptions about the data and its solution can be easily visualized. Since most hierarchical clustering approaches assume variables are measured on the same scale, a simple strategy for clustering mixed-type data is to homogenize the variables before clustering. This would mean either recoding the continuous variables as categorical ones or vice versa. However, typical discretization of continuous variables implies loss of information. In this work, an agglomerative hierarchical clustering approach for mixed-type data is proposed, which relies on a barycentric coding of continuous variables. The proposed approach minimizes information loss and is compatible with the framework of correspondence analysis. The utility of the method is demonstrated on real and simulated data.

We study regression adjustments with additional covariates in randomized experiments under covariate-adaptive randomizations (CARs) when subject compliance is imperfect. We develop a regression-adjusted local average treatment effect (LATE) estimator that is proven to improve efficiency in the estimation of LATEs under CARs. Our adjustments can be parametric in linear and nonlinear forms, nonparametric, and high-dimensional. Even when the adjustments are misspecified, our proposed estimator is still consistent and asymptotically normal, and their inference method still achieves the exact asymptotic size under the null. When the adjustments are correctly specified, our estimator achieves the minimum asymptotic variance. When the adjustments are parametrically misspecified, we construct a new estimator which is weakly more efficient than linearly and nonlinearly adjusted estimators, as well as the one without any adjustments. Simulation evidence and empirical application confirm efficiency gains achieved by regression adjustments relative to both the estimator without adjustment and the standard two-stage least squares estimator.

Informed Markov chain Monte Carlo (MCMC) methods have been proposed as scalable solutions to Bayesian posterior computation on high-dimensional discrete state spaces, but theoretical results about their convergence behavior in general settings are lacking. In this article, we propose a class of MCMC schemes called informed importance tempering (IIT), which combine importance sampling and informed local proposals, and derive generally applicable spectral gap bounds for IIT estimators. Our theory shows that IIT samplers have remarkable scalability when the target posterior distribution concentrates on a small set. Further, both our theory and numerical experiments demonstrate that the informed proposal should be chosen with caution: the performance of some proposals may be very sensitive to the shape of the target distribution. We find that the "square-root proposal weighting" scheme tends to perform well in most settings.

Biclustering is the task of simultaneously clustering the rows and columns of the data matrix into different subgroups such that the rows and columns within a subgroup exhibit similar patterns. In this paper, we consider the case of producing block-diagonal biclusters. We provide a new formulation of the biclustering problem based on the idea of minimizing the empirical clustering risk. We develop and prove a consistency result with respect to the empirical clustering risk. Since the optimization problem is combinatorial in nature, finding the global minimum is computationally intractable. In light of this fact, we propose a simple and novel algorithm that finds a local minimum by alternating the use of an adapted version of the k-means clustering algorithm between columns and rows. We evaluate and compare the performance of our algorithm to other related biclustering methods on both simulated data and real-world gene expression data sets. The results demonstrate that our algorithm is able to detect meaningful structures in the data and outperform other competing biclustering methods in various settings and situations.

This paper tackles the problem of missing data imputation for noisy and non-Gaussian data. A classical imputation method, the Expectation Maximization (EM) algorithm for Gaussian mixture models, has shown interesting properties when compared to other popular approaches such as those based on k-nearest neighbors or on multiple imputations by chained equations. However, Gaussian mixture models are known to be not robust to heterogeneous data, which can lead to poor estimation performance when the data is contaminated by outliers or come from a non-Gaussian distributions. To overcome this issue, a new expectation maximization algorithm is investigated for mixtures of elliptical distributions with the nice property of handling potential missing data. The complete-data likelihood associated with mixtures of elliptical distributions is well adapted to the EM framework thanks to its conditional distribution, which is shown to be a Student distribution. Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data. Furthermore, experiments conducted on real-world datasets show that this algorithm is very competitive when compared to other classical imputation methods.

We present a new clustering method in the form of a single clustering equation that is able to directly discover groupings in the data. The main proposition is that the first neighbor of each sample is all one needs to discover large chains and finding the groups in the data. In contrast to most existing clustering algorithms our method does not require any hyper-parameters, distance thresholds and/or the need to specify the number of clusters. The proposed algorithm belongs to the family of hierarchical agglomerative methods. The technique has a very low computational overhead, is easily scalable and applicable to large practical problems. Evaluation on well known datasets from different domains ranging between 1077 and 8.1 million samples shows substantial performance gains when compared to the existing clustering techniques.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司