亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

NLP research in Hebrew has largely focused on morphology and syntax, where rich annotated datasets in the spirit of Universal Dependencies are available. Semantic datasets, however, are in short supply, hindering crucial advances in the development of NLP technology in Hebrew. In this work, we present ParaShoot, the first question answering dataset in modern Hebrew. The dataset follows the format and crowdsourcing methodology of SQuAD, and contains approximately 3000 annotated examples, similar to other question-answering datasets in low-resource languages. We provide the first baseline results using recently-released BERT-style models for Hebrew, showing that there is significant room for improvement on this task.

相關內容

自(zi)動問(wen)(wen)答(da)(Question Answering, QA)是(shi)(shi)指利用(yong)(yong)計(ji)算(suan)機自(zi)動回(hui)答(da)用(yong)(yong)戶所提(ti)出的(de)(de)(de)問(wen)(wen)題以滿足用(yong)(yong)戶知識需求(qiu)的(de)(de)(de)任務。不(bu)同于現有搜索引擎,問(wen)(wen)答(da)系(xi)統是(shi)(shi)信息服(fu)務的(de)(de)(de)一種高級形(xing)式,系(xi)統返回(hui)用(yong)(yong)戶的(de)(de)(de)不(bu)再是(shi)(shi)基于關鍵詞匹配排序的(de)(de)(de)文(wen)檔列(lie)表,而是(shi)(shi)精準的(de)(de)(de)自(zi)然語言答(da)案。近(jin)年來,隨著人工智能的(de)(de)(de)飛速發展(zhan),自(zi)動問(wen)(wen)答(da)已經成為倍受(shou)關注且(qie)發展(zhan)前景廣泛的(de)(de)(de)研究方向。

知識薈萃

精品入門和進階教程、論文和代碼(ma)整理等

更多

查看相關VIP內容、論文、資訊等

Visual question answering (VQA) is a challenging task, which has attracted more and more attention in the field of computer vision and natural language processing. However, the current visual question answering has the problem of language bias, which reduces the robustness of the model and has an adverse impact on the practical application of visual question answering. In this paper, we conduct a comprehensive review and analysis of this field for the first time, and classify the existing methods according to three categories, including enhancing visual information, weakening language priors, data enhancement and training strategies. At the same time, the relevant representative methods are introduced, summarized and analyzed in turn. The causes of language bias are revealed and classified. Secondly, this paper introduces the datasets mainly used for testing, and reports the experimental results of various existing methods. Finally, we discuss the possible future research directions in this field.

Community Question Answering (CQA) fora such as Stack Overflow and Yahoo! Answers contain a rich resource of answers to a wide range of community-based questions. Each question thread can receive a large number of answers with different perspectives. One goal of answer summarization is to produce a summary that reflects the range of answer perspectives. A major obstacle for abstractive answer summarization is the absence of a dataset to provide supervision for producing such summaries. Recent works propose heuristics to create such data, but these are often noisy and do not cover all perspectives present in the answers. This work introduces a novel dataset of 4,631 CQA threads for answer summarization, curated by professional linguists. Our pipeline gathers annotations for all subtasks involved in answer summarization, including the selection of answer sentences relevant to the question, grouping these sentences based on perspectives, summarizing each perspective, and producing an overall summary. We analyze and benchmark state-of-the-art models on these subtasks and introduce a novel unsupervised approach for multi-perspective data augmentation, that further boosts overall summarization performance according to automatic evaluation. Finally, we propose reinforcement learning rewards to improve factual consistency and answer coverage and analyze areas for improvement.

The Visual Question Answering (VQA) task combines challenges for processing data with both Visual and Linguistic processing, to answer basic `common sense' questions about given images. Given an image and a question in natural language, the VQA system tries to find the correct answer to it using visual elements of the image and inference gathered from textual questions. In this survey, we cover and discuss the recent datasets released in the VQA domain dealing with various types of question-formats and enabling robustness of the machine-learning models. Next, we discuss about new deep learning models that have shown promising results over the VQA datasets. At the end, we present and discuss some of the results computed by us over the vanilla VQA models, Stacked Attention Network and the VQA Challenge 2017 winner model. We also provide the detailed analysis along with the challenges and future research directions.

We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph structures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.

Humans gather information by engaging in conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference and pragmatic reasoning. We evaluate strong conversational and reading comprehension models on CoQA. The best system obtains an F1 score of 65.1%, which is 23.7 points behind human performance (88.8%), indicating there is ample room for improvement. We launch CoQA as a challenge to the community at //stanfordnlp.github.io/coqa/

We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total). The interactions involve two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context, as we show in a detailed qualitative evaluation. We also report results for a number of reference models, including a recently state-of-the-art reading comprehension architecture extended to model dialog context. Our best model underperforms humans by 20 F1, suggesting that there is significant room for future work on this data. Dataset, baseline, and leaderboard are available at quac.ai.

A popular recent approach to answering open-domain questions is to first search for question-related passages and then apply reading comprehension models to extract answers. Existing methods usually extract answers from single passages independently. But some questions require a combination of evidence from across different sources to answer correctly. In this paper, we propose two models which make use of multiple passages to generate their answers. Both use an answer-reranking approach which reorders the answer candidates generated by an existing state-of-the-art QA model. We propose two methods, namely, strength-based re-ranking and coverage-based re-ranking, to make use of the aggregated evidence from different passages to better determine the answer. Our models have achieved state-of-the-art results on three public open-domain QA datasets: Quasar-T, SearchQA and the open-domain version of TriviaQA, with about 8 percentage points of improvement over the former two datasets.

Bar charts are an effective way to convey numeric information, but today's algorithms cannot parse them. Existing methods fail when faced with even minor variations in appearance. Here, we present DVQA, a dataset that tests many aspects of bar chart understanding in a question answering framework. Unlike visual question answering (VQA), DVQA requires processing words and answers that are unique to a particular bar chart. State-of-the-art VQA algorithms perform poorly on DVQA, and we propose two strong baselines that perform considerably better. Our work will enable algorithms to automatically extract numeric and semantic information from vast quantities of bar charts found in scientific publications, Internet articles, business reports, and many other areas.

We introduce MilkQA, a question answering dataset from the dairy domain dedicated to the study of consumer questions. The dataset contains 2,657 pairs of questions and answers, written in the Portuguese language and originally collected by the Brazilian Agricultural Research Corporation (Embrapa). All questions were motivated by real situations and written by thousands of authors with very different backgrounds and levels of literacy, while answers were elaborated by specialists from Embrapa's customer service. Our dataset was filtered and anonymized by three human annotators. Consumer questions are a challenging kind of question that is usually employed as a form of seeking information. Although several question answering datasets are available, most of such resources are not suitable for research on answer selection models for consumer questions. We aim to fill this gap by making MilkQA publicly available. We study the behavior of four answer selection models on MilkQA: two baseline models and two convolutional neural network archictetures. Our results show that MilkQA poses real challenges to computational models, particularly due to linguistic characteristics of its questions and to their unusually longer lengths. Only one of the experimented models gives reasonable results, at the cost of high computational requirements.

We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance. Our VQA demo is available on CloudCV (//cloudcv.org/vqa).

北京阿比特科技有限公司