亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we obtain results related to the approximation of $h$-dimensional dominant subspaces and low rank approximations of matrices $ A\in\mathbb K^{m\times n}$ (where $\mathbb K=\mathbb R$ or $\mathbb C)$ in case there is no singular gap at the index $h$, i.e. if $\sigma_h=\sigma_{h+1}$ (where $\sigma_1\geq \ldots\geq \sigma_p\geq 0$ denote the singular values of $ A$, and $p=\min\{m,n\}$). In order to do this, we develop a novel perspective for the convergence analysis of the classical deterministic block Krylov methods in this context. Indeed, starting with a matrix $ X\in\mathbb K^{n\times r}$ with $r\geq h$ satisfying a compatibility assumption with some $h$-dimensional right dominant subspace, we show that block Krylov methods produce arbitrarily good approximations for both problems mentioned above. Our approach is based on recent work by Drineas, Ipsen, Kontopoulou and Magdon-Ismail on approximation of structural left dominant subspaces. The main difference between our work and previous work on this topic is that instead of exploiting a singular gap at $h$ (which is zero in this case) we exploit the nearest existing singular gaps.

相關內容

We investigate two fundamental questions intersecting coding theory and combinatorial geometry, with emphasis on their connections. These are the problem of computing the asymptotic density of MRD codes in the rank metric, and the Critical Problem for combinatorial geometries by Crapo and Rota. Using methods from semifield theory, we derive two lower bounds for the density function of full-rank, square MRD codes. The first bound is sharp when the matrix size is a prime number and the underlying field is sufficiently large, while the second bound applies to the binary field. We then take a new look at the Critical Problem for combinatorial geometries, approaching it from a qualitative, often asymptotic, viewpoint. We illustrate the connection between this very classical problem and that of computing the asymptotic density of MRD codes. Finally, we study the asymptotic density of some special families of codes in the rank metric, including the symmetric, alternating and Hermitian ones. In particular, we show that the optimal codes in these three contexts are sparse.

In this paper, we investigate the energy minimization model of the ensemble Kohn-Sham density functional theory for metallic systems, in which a pseudo-eigenvalue matrix and a general smearing approach are involved. We study the invariance and the existence of the minimizer of the energy functional. We propose an adaptive double step size strategy and the corresponding preconditioned conjugate gradient methods for solving the energy minimization model. Under some mild but reasonable assumptions, we prove the global convergence of our algorithms. Numerical experiments show that our algorithms are efficient, especially for large scale metallic systems. In particular, our algorithms produce convergent numerical approximations for some metallic systems, for which the traditional self-consistent field iterations fail to converge.

In this paper we analyze the behavior of the Oja's algorithm for online/streaming principal component subspace estimation. It is proved that with high probability it performs an efficient, gap-free, global convergence rate to approximate an principal component subspace for any sub-Gaussian distribution. Moreover, it is the first time to show that the convergence rate, namely the upper bound of the approximation, exactly matches the lower bound of an approximation obtained by the offline/classical PCA up to a constant factor.

We improve the bound on K\"uhnel's problem to determine the smallest $n$ such that the $k$-skeleton of an $n$-simplex $\Delta_n^{(k)}$ does not embed into a compact PL $2k$-manifold $M$ by showing that if $\Delta_n^{(k)}$ embeds into $M$, then $n\leq (2k+1)+(k+1)\beta_k(M;\mathbb Z_2)$. As a consequence we obtain improved Radon and Helly type results for set systems in such manifolds. Our main tool is a new description of an obstruction for embeddability of a $k$-complex $K$ into a compact PL $2k$-manifold $M$ via the intersection form on $M$. In our approach we need that for every map $f\colon K\to M$ the restriction to the $(k-1)$-skeleton of $K$ is nullhomotopic. In particular, this condition is satisfied in interesting cases if $K$ is $(k-1)$-connected, for example a $k$-skeleton of $n$-simplex, or if $M$ is $(k-1)$-connected. In addition, if $M$ is $(k-1)$-connected and $k\geq 3$, the obstruction is complete, meaning that a $k$-complex $K$ embeds into $M$ if and only if the obstruction vanishes. For trivial intersection forms, our obstruction coincides with the standard van Kampen obstruction. However, if the form is non-trivial, the obstruction is not linear but rather 'quadratic' in a sense that it vanishes if and only if certain system of quadratic diophantine equations is solvable. This may potentially be useful in attacking algorithmic decidability of embeddability of $k$-complexes into PL $2k$-manifolds.

We investigate the problem of approximating the matrix function $f(A)$ by $r(A)$, with $f$ a Markov function, $r$ a rational interpolant of $f$, and $A$ a symmetric Toeplitz matrix. In a first step, we obtain a new upper bound for the relative interpolation error $1-r/f$ on the spectral interval of $A$. By minimizing this upper bound over all interpolation points, we obtain a new, simple and sharp a priori bound for the relative interpolation error. We then consider three different approaches of representing and computing the rational interpolant $r$. Theoretical and numerical evidence is given that any of these methods for a scalar argument allows to achieve high precision, even in the presence of finite precision arithmetic. We finally investigate the problem of efficiently evaluating $r(A)$, where it turns out that the relative error for a matrix argument is only small if we use a partial fraction decomposition for $r$ following Antoulas and Mayo. An important role is played by a new stopping criterion which ensures to automatically find the degree of $r$ leading to a small error, even in presence of finite precision arithmetic.

In this paper, we study a non-local approximation of the time-dependent (local) Eikonal equation with Dirichlet-type boundary conditions, where the kernel in the non-local problem is properly scaled. Based on the theory of viscosity solutions, we prove existence and uniqueness of the viscosity solutions of both the local and non-local problems, as well as regularity properties of these solutions in time and space. We then derive error bounds between the solution to the non-local problem and that of the local one, both in continuous-time and Backward Euler time discretization. We then turn to studying continuum limits of non-local problems defined on random weighted graphs with $n$ vertices. In particular, we establish that if the kernel scale parameter decreases at an appropriate rate as $n$ grows, then almost surely, the solution of the problem on graphs converges uniformly to the viscosity solution of the local problem as the time step vanishes and the number vertices $n$ grows large.

Motivated by applications to the theory of rank-metric codes, we study the problem of estimating the number of common complements of a family of subspaces over a finite field in terms of the cardinality of the family and its intersection structure. We derive upper and lower bounds for this number, along with their asymptotic versions as the field size tends to infinity. We then use these bounds to describe the general behaviour of common complements with respect to sparseness and density, showing that the decisive property is whether or not the number of spaces to be complemented is negligible with respect to the field size. By specializing our results to matrix spaces, we obtain upper and lower bounds for the number of MRD codes in the rank metric. In particular, we answer an open question in coding theory, proving that MRD codes are sparse for all parameter sets as the field size grows, with only very few exceptions. We also investigate the density of MRD codes as their number of columns tends to infinity, obtaining a new asymptotic bound. Using properties of the Euler function from number theory, we then show that our bound improves on known results for most parameter sets. We conclude the paper by establishing general structural properties of the density function of rank-metric codes.

The Gromov-Hausdorff distance $(d_{GH})$ proves to be a useful distance measure between shapes. In order to approximate $d_{GH}$ for compact subsets $X,Y\subset\mathbb{R}^d$, we look into its relationship with $d_{H,iso}$, the infimum Hausdorff distance under Euclidean isometries. As already known for dimension $d\geq 2$, the $d_{H,iso}$ cannot be bounded above by a constant factor times $d_{GH}$. For $d=1$, however, we prove that $d_{H,iso}\leq\frac{5}{4}d_{GH}$. We also show that the bound is tight. In effect, this gives rise to an $O(n\log{n})$-time algorithm to approximate $d_{GH}$ with an approximation factor of $\left(1+\frac{1}{4}\right)$.

Several recent applications of optimal transport (OT) theory to machine learning have relied on regularization, notably entropy and the Sinkhorn algorithm. Because matrix-vector products are pervasive in the Sinkhorn algorithm, several works have proposed to \textit{approximate} kernel matrices appearing in its iterations using low-rank factors. Another route lies instead in imposing low-rank constraints on the feasible set of couplings considered in OT problems, with no approximations on cost nor kernel matrices. This route was first explored by Forrow et al., 2018, who proposed an algorithm tailored for the squared Euclidean ground cost, using a proxy objective that can be solved through the machinery of regularized 2-Wasserstein barycenters. Building on this, we introduce in this work a generic approach that aims at solving, in full generality, the OT problem under low-rank constraints with arbitrary costs. Our algorithm relies on an explicit factorization of low rank couplings as a product of \textit{sub-coupling} factors linked by a common marginal; similar to an NMF approach, we alternatively updates these factors. We prove the non-asymptotic stationary convergence of this algorithm and illustrate its efficiency on benchmark experiments.

This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.

北京阿比特科技有限公司