Obtaining the solutions of partial differential equations based on various machine learning methods has drawn more and more attention in the fields of scientific computation and engineering applications. In this work, we first propose a coupled Extreme Learning Machine (called CELM) method incorporated with the physical laws to solve a class of fourth-order biharmonic equations by reformulating it into two well-posed Poisson problems. In addition, some activation functions including tangent, gauss, sine, and trigonometric (sin+cos) functions are introduced to assess our CELM method. Notably, the sine and trigonometric functions demonstrate a remarkable ability to effectively minimize the approximation error of the CELM model. In the end, several numerical experiments are performed to study the initializing approaches for both the weights and biases of the hidden units in our CELM model and explore the required number of hidden units. Numerical results show the proposed CELM algorithm is high-precision and efficient to address the biharmonic equation in both regular and irregular domains.
Optimizing static risk-averse objectives in Markov decision processes is difficult because they do not admit standard dynamic programming equations common in Reinforcement Learning (RL) algorithms. Dynamic programming decompositions that augment the state space with discrete risk levels have recently gained popularity in the RL community. Prior work has shown that these decompositions are optimal when the risk level is discretized sufficiently. However, we show that these popular decompositions for Conditional-Value-at-Risk (CVaR) and Entropic-Value-at-Risk (EVaR) are inherently suboptimal regardless of the discretization level. In particular, we show that a saddle point property assumed to hold in prior literature may be violated. However, a decomposition does hold for Value-at-Risk and our proof demonstrates how this risk measure differs from CVaR and EVaR. Our findings are significant because risk-averse algorithms are used in high-stake environments, making their correctness much more critical.
The local convergence of an inexact Newton method is studied for solving generalized equations on Riemannian manifolds by using the metric regularity property which is explored as well. Under suitable conditions and without any additional geometric assumptions, local convergence results with linear and quadratic rate and a semi-local convergence result are obtained for the proposed method. Finally, the theory can be applied to problems of finding a singularity of the sum of two vector fields.
The field of computational pathology has witnessed remarkable progress in the development of both task-specific predictive models and task-agnostic self-supervised vision encoders. However, despite the explosive growth of generative artificial intelligence (AI), there has been limited study on building general purpose, multimodal AI assistants tailored to pathology. Here we present PathChat, a vision-language generalist AI assistant for human pathology using an in-house developed foundational vision encoder pretrained on 100 million histology images from over 100,000 patient cases and 1.18 million pathology image-caption pairs. The vision encoder is then combined with a pretrained large language model and the whole system is finetuned on over 250,000 diverse disease agnostic visual language instructions. We compare PathChat against several multimodal vision language AI assistants as well as GPT4V, which powers the commercially available multimodal general purpose AI assistant ChatGPT-4. When relevant clinical context is provided with the histology image, PathChat achieved a diagnostic accuracy of 87% on multiple-choice questions based on publicly available cases of diverse tissue origins and disease models. Additionally, using open-ended questions and human expert evaluation, we found that overall PathChat produced more accurate and pathologist-preferable responses to diverse queries related to pathology. As an interactive and general vision language AI assistant that can flexibly handle both visual and natural language inputs, PathChat can potentially find impactful applications in pathology education, research, and human-in-the-loop clinical decision making.
Conformal prediction is a statistical tool for producing prediction regions for machine learning models that are valid with high probability. A key component of conformal prediction algorithms is a non-conformity score function that quantifies how different a model's prediction is from the unknown ground truth value. Essentially, these functions determine the shape and the size of the conformal prediction regions. However, little work has gone into finding non-conformity score functions that produce prediction regions that are multi-modal and practical, i.e., that can efficiently be used in engineering applications. We propose a method that optimizes parameterized shape template functions over calibration data, which results in non-conformity score functions that produce prediction regions with minimum volume. Our approach results in prediction regions that are multi-modal, so they can properly capture residuals of distributions that have multiple modes, and practical, so each region is convex and can be easily incorporated into downstream tasks, such as a motion planner using conformal prediction regions. Our method applies to general supervised learning tasks, while we illustrate its use in time-series prediction. We provide a toolbox and present illustrative case studies of F16 fighter jets and autonomous vehicles, showing an up to $68\%$ reduction in prediction region area.
Morphing quadrotors with four external actuators can adapt to different restricted scenarios by changing their geometric structure. However, previous works mainly focus on the improvements in structures and controllers, and existing planning algorithms don't consider the morphological modifications, which leads to safety and dynamic feasibility issues. In this paper, we propose a unified planning and control framework for morphing quadrotors to deform autonomously and efficiently. The framework consists of a milliseconds-level spatial-temporal trajectory optimizer that takes into account the morphological modifications of quadrotors. The optimizer can generate full-body safety trajectories including position and attitude. Additionally, it incorporates a nonlinear attitude controller that accounts for aerodynamic drag and dynamically adjusts dynamic parameters such as the inertia tensor and Center of Gravity. The controller can also online compute the thrust coefficient during morphing. Benchmark experiments compared with existing methods validate the robustness of the proposed controller. Extensive simulations and real-world experiments are performed to demonstrate the effectiveness of the proposed framework.
The purpose of this work is to present an effective tool for computing different QR-decompositions of a complex nonsingular square matrix. The concept of the discrete signal-induced heap transform (DsiHT, Grigoryan 2006) is used. This transform is fast, has a unique algorithm for any length of the input vector/signal and can be used with different complex basic 2x2 transforms. The DsiHT zeroes all components of the input signal while moving or heaping the energy of the signal into one component, such as the first. We describe three different types of QR-decompositions that use the basic transforms with the T, G, and M-type complex matrices we introduce, and also without matrices, but using analytical formulas. We also present the mixed QR-decomposition, when different type DsiHTs are used at different stages of the algorithm. The number of such decompositions is greater than 3^((N-1)), for an NxN complex matrix. Examples of the QR-decomposition are described in detail for the 4x4 and 6x6 complex matrices and compared with the known method of Householder transforms. The precision of the QR-decompositions of NxN matrices, when N are 6, 13, 17, 19, 21, 40, 64, 100, 128, 201, 256, and 400 is also compared. The MATLAB-based scripts of the codes for QR-decompositions by the described DsiHTs are given.
Valued constraint satisfaction problems (VCSPs) are a large class of computational optimisation problems. If the variables of a VCSP take values from a finite domain, then recent results in constraint satisfaction imply that the problem is in P or NP-complete, depending on the set of admitted cost functions. Here we study the larger class of cost functions over countably infinite domains that have an oligomorphic automorphism group. We present a hardness condition based on a generalisation of pp-constructability as known for (classical) CSPs. We also provide a universal-algebraic polynomial-time tractability condition, based on the concept of fractional polymorphisms. We apply our general theory to study the computational complexity of resilience problems in database theory (under bag semantics). We show how to construct, for every fixed conjunctive query (and more generally for every union of conjunctive queries), a set of cost functions with an oligomorphic automorphism group such that the resulting VCSP is polynomial-time equivalent to the resilience problem; we only require that the query is connected and show that this assumption can be made without loss of generality. For the case where the query is acylic, we obtain a complexity dichotomy of the resilience problem, based on the dichotomy for finite-domain VCSPs. To illustrate the utility of our methods, we exemplarily settle the complexity of a (non-acyclic) conjunctive query whose computational complexity remained open in the literature by verifying that it satisfies our tractability condition. We conjecture that for resilience problems, our hardness and tractability conditions match, which would establish a complexity dichotomy for resilience problems for (unions of) conjunctive queries.
We present IntrinsicAvatar, a novel approach to recovering the intrinsic properties of clothed human avatars including geometry, albedo, material, and environment lighting from only monocular videos. Recent advancements in human-based neural rendering have enabled high-quality geometry and appearance reconstruction of clothed humans from just monocular videos. However, these methods bake intrinsic properties such as albedo, material, and environment lighting into a single entangled neural representation. On the other hand, only a handful of works tackle the problem of estimating geometry and disentangled appearance properties of clothed humans from monocular videos. They usually achieve limited quality and disentanglement due to approximations of secondary shading effects via learned MLPs. In this work, we propose to model secondary shading effects explicitly via Monte-Carlo ray tracing. We model the rendering process of clothed humans as a volumetric scattering process, and combine ray tracing with body articulation. Our approach can recover high-quality geometry, albedo, material, and lighting properties of clothed humans from a single monocular video, without requiring supervised pre-training using ground truth materials. Furthermore, since we explicitly model the volumetric scattering process and ray tracing, our model naturally generalizes to novel poses, enabling animation of the reconstructed avatar in novel lighting conditions.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.